[1] Wang N, Tang K. Automatic generation of gouge-free and angular velocity-compliant five-axis tool path[J]. Computer-Aided Design, 2007, 39(10): 841-852.
[2] Kersting P, Zabel A. Optimizing NC-tool paths for sim-ultaneous five-axis milling based on multi-population multi-objective evolutionary algorithms[J]. Advances in Engineering Software, 2009, 40(6): 452-463.
[3] Bi Q Z, Wang Y H, Zhu L M, et al. Wholly smoothing cutter orientations for five-axis NC machining based on cutter contact point mesh[J]. Science China: Technological Sciences, 2010, 40(10): 1159-1168 (in Chinese). 毕庆贞, 王宇晗, 朱利民, 等.刀触点网格上整体光顺五轴数控加工刀轴方向的模型与算法[J].中国科学: 技术科学, 2010, 40(10): 1159-1168.
[4] Balasubramaniam M, Sarma S E, Marciniak K. Collision free finishing tool paths from visibility data[J]. Computer-Aided Design, 2003, 35(4): 359-374.
[5] Bi Q Z, Wang Y H, Ding H. A GPU-based algorithm for generating collision-free and orientation-smooth five-axis finishing tool paths of a ball-end cutter[J]. International Journal of Production Research, 2010, 48(4): 1105-1124.
[6] Ho M C, Hwang Y R, Hu C H. Five-axis tool orientation smoothing using quaternion interpolation algorithm[J]. International Journal of Machine Tool & Manufacture, 2003, 43 (12): 1259-1267.
[7] Wang Q H, Li J R, Gong H Q. Graphics-assisted cutter orientation correction for collision-free five-axis machining[J]. International Journal of Production Research, 2007, 45(13): 2875-2894.
[8] Luo M, Zhang D H, Wu B H, et al. Tool orientation control using quaternion interpolation in multi-axis milling of blade[C]//2010 International Conference on Manufacturing Automation (ICMA). Piscataway, NJ: IEEE Press, 2010: 128-132.
[9] Li X Y, Ren J X, Liang Y S, et al. Tool axis planning for five-axis machining of complex channel parts[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2641-2651 (in Chinese). 李祥宇, 任军学, 梁永收, 等. 复杂通道类零件五轴加工刀轴规划方法[J]. 航空学报, 2014, 35(9): 2641-2651.
[10] Ren X G, Hou J Q. Method of tool path optimization in impeller NC machining based on configuration space theo-ry[J]. Advanced Materials Research, 2014, 842: 602-606.
[11] Edalew K O, Abdalla H S, Nash R J. A computer-based intelligent system for automatic tool selection[J]. Materials & Design, 2001, 22(5): 337-351.
[12] Jensen C G, Red W E, Pi J. Tool selection for five-axis curvature matched machining[J]. Computer-Aided Design, 2002, 34(3): 251-266.
[13] Chen Z C, Liu G. Automated tool-orientation determinations for 4-axis non-gouge, non-interference milling of axial-flow compressors airfoils[C]//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air. Jalan Bukit Merah, Singapore: ASME, 2007, 5: 147-154.
[14] Li H Y, Zhang Y F. A geometric method for optimal multi-cutter selection in 5-axis finish cut of sculptured surfaces[C]//IEEE International Conference on Automation and Logistics(ICAL 2008). Piscataway, NJ: IEEE Press, 2008: 153-158.
[15] Chen Z C, Liu G. An intelligent approach to multiple cutters of maximum sizes for three-axis milling of sculptured surface parts[J]. Journal of Manufacturing Science and Engineering, 2009, 131(1): 014501-014505.
[16] Roman Flores A. Surface partitioning for 3+2-axis machining[D]. Waterloo: University of Waterloo, 2007. |