[1] Hoyas S, Jiménez J. Scaling of the velocity fluctuations in turbulent channels up to Retau=2003[J]. Physics of Fluids, 2006, 18(011702): 1-4.
[2] Spalart P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3): 252-263.
[3] Prandtl L. Bericht uber untersuchungen zur ausgebildeten turbulenz[J]. Zeitschrift Für angewandte Mathematik und Mechanik, 1925, 5(1): 136-139.
[4] Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows[J]. La Recherche Aerospatiale, 1994, 1(2): 5-21.
[5] Menter F R. Eddy viscosity transport equations and their relation to the k-ε model[J]. Journal of Fluids Engineering, 1997, 119: 876-884.
[6] Edwards J, Roy C, Blottner F, et al. Development of a one-equation transition/turbulence model[J]. AIAA Journal, 2001, 39(9): 1691-1698.
[7] Wilcox D. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11): 1299-1310.
[8] Abid R. Evaluation of two-equation turbulence models for predicting transitional flows[J]. International Journal of Engineering Science, 1993, 31(6): 831-840.
[9] Rotta J. Statistische theorie nicht-homogener turbulenz I and II [J]. Journal of Physics, 1951, 129(6): 547-572.
[10] Launder B, Sharma B. Application of the energy-dissipation model of turbulence to the calculation of flow near spinning disc[J]. Letter Heat Mass Transfer, 1974(1): 131-138.
[11] Patel V C, Rodi W, Scheuerer G. Turbulence models for near-wall and low Reynolds number flows-A review[J]. AIAA Journal, 1985, 23(9): 1308-1319.
[12] Menter F. Improved two-equation k-ω turbulence models for aerodynamic flows, NASA-TM 103975. Washington D.C.: NASA, 1992.
[13] Bradshaw P, Ferriss D, Atwell N. Calculation of boundary-layer using the turbulent energy equation[J]. Journal of Fluid Mechanics, 1967, 28(3): 593-616.
[14] Wen X Q, Liu Y W, Fang L, et al. Improving the capability of k-ω SST turbulence model for predicting stall characteristics of airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 31(8): 1127-1132. (in Chinese) 文晓庆, 柳阳威, 方乐, 等. 提高k-ω SST模型对翼型失速特性的模拟能力[J]. 北京航空航天大学学报, 2013, 31(8): 1127-1132.
[15] Liu J Y. An improved SST turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Snica, 2012, 33(12): 2193-2201. (in Chinese) 刘景源. SST湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12): 2193-2201.
[16] She Z S, Chen X, Wu Y, et al. New perspective in statistical modeling of wall-bounded turbulence[J]. Acta Mechanica Sinica, 2010, 26: 847-861.
[17] She Z S, Leveque E. Universal scaling laws in fully developed turbulence[J]. Physics Review Letter, 1997, 72(3): 336-339.
[18] Menter F, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence Heat and Mass Transfer, 2003, 4(1): 625-632.
[19] Spalart P, Jou W, Strelets M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach//Liu C Q, Liu Z N. Advances in DNS/LES, 1st AFOSR International Conference on DNS/LES. Los Angles: Greyden Press, 1997: 137-147.
[20] Menter F. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description[J]. Flow Turbulence Combust, 2010, 85(5): 113-138.
[21] Wilcox D. Turbulence modeling for CFD[M]. California: DCW Industries, Inc., 1994: 90.
[22] Xu J L, Yan C. A one-equation scale-adaptive simulation model[J]. Physics of Gases, 2010, 5(1): 79-82.(in Chinese) 徐晶磊, 阎超. 一个一方程Scale-Adaptive simulation模型的构造[J]. 气体物理, 2010, 5(1): 79-82.
[23] Zhang Y, Bai J Q, Hua J, et al. Improvement and assessment of the SST equation based on karman scale and filter method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 442-446. (in Chinese) 张扬, 白俊强, 华俊, 等.基于卡门尺度和滤波方法的SST方程改进和评估[J]. 力学学报, 2013, 45(3): 442-446.
[24] Xu J L, Zhang Y, Bai J Q, et al. A transition model based only on turbulence kinetic equation//Hu H Y. Chinese Congress of Theoretical and Applied Mechanics 2013. Xi'an: Chinese Journal of Theoretical and Applied Mechanics, 2013: 142. (in Chinese) 徐晶磊, 张扬, 白俊强, 等.一个方程驱动转捩的湍动能一方程模型//胡海岩. 中国力学大会文集2013. 西安: 中国力学学会, 2013: 142.
[25] White F. Viscous fluid flow[M]. New York: McGraw-Hill, Inc., 1991: 430.
[26] Spalding D B. A single formula for the "law of the wall" [J]. Journal of Applied Mechanics, 1961, 28(3): 455.
[27] Cook P, McDonald M, Firmin M. Aerofoil RAE-2822 pressure distributions, and boundary layer and wake measurements, AR-138, AGARD. : Experimental Data Base for Computer Program Assessment, 1979.
[28] Schmitt V, Charpin F. Pressure distributions on the ONERA-M6 wing at transonic mach numbers, AR-138, AGARD. : Experimental Data Base for Computer Program Assessment, 1979.
[29] Laflin R, Klausmeyer M, Zickuhr T, et al. Data summary of data from the second AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5): 1165-1178.
[30] Rumsey C L, Rivers S M, Morrison J H, et al. Study of CFD variation on transport configurations for the second drag prediction workshop[J]. Computers and Fluids, 2005, 34(7): 785-816.
[31] Wang Y T, Wang G X, Zhang Y L. Validation of TRIP 2.0: numerical simulation of DPW II complex configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 34-40. (in Chinese) 王运涛, 王光学, 张玉伦. TRIP 2.0软件的确认: DPW II复杂组合体的数值模拟[J]. 航空学报, 2008, 29(1): 34-40. |