[1] Litt J S, Simon D L, Garg S, et al. A survey of intelligent control and health management technologies for aircraft propulsion systems, NASA/TM-2005-213622, ARL-TR-3413[R]. Cleveland, OH: NASA, 2005.
[2] Jaw L C. Recent advancements in aircraft engine health management (EHM) technologies and recommendations for the next step, ASME Paper, GT-2005-68625[R]. Reno: ASME, 2005.
[3] Wei X K, Feng Y, Liu F, et al. Development strategy and key prognostics health management technologies for military aero-engine in China[J]. Journal of Aerospace Power, 2011, 26(9): 2107-2115. (in Chinese) 尉询楷, 冯悦, 刘芳, 等. 军用航空发动机PHM发展策略及关键技术[J]. 航空动力学报, 2011, 26(9): 2107-2115.
[4] Jiang C H, Sun Z Y, Wang X. Critical technologies for aero-engine prognostics and health management systems development[J]. Journal of Aerospace Power, 2009, 24(11): 2589-2594.(in Chinese) 姜彩虹, 孙志岩, 王曦. 航空发动机预测健康管理系统设计的关键技术[J]. 航空动力学报, 2009, 24(11): 2589-2594.
[5] Kobayashi T, Simon D L. Integration of on-line and off-line diagnostic algorithms for aircraft engine health management[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(4): 986-993.
[6] Simon D L, Garg S. Optimal tuner selection for Kalman filter-based aircraft engine performance estimation[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(3): 031601.1-031601.10.
[7] Simon D L. An integrated architecture for on-board aircraft engine performance trend monitoring and gas path fault diagnostics, NASA/TM-2010-216358[R]. Cleveland, OH: NASA, 2010.
[8] Armstrong J B, Simon D L. Implementation of an integrated on-board aircraft engine diagnostic architecture, NASA/TM-2012-217279[R]. Cleveland, OH: NASA, 2012.
[9] Yuan C F, Yao H, Yang G. On-board real-time adaptive model of aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 561-564.(in Chinese) 袁春飞, 姚华, 杨刚. 航空发动机机载实时自适应模型研究[J]. 航空学报, 2006, 27(4): 561-564.
[10] Zhang H B, Chen T H, Sun J G, et al. Design and simulation of a new novel engine adaptive model[J]. Journal of Propulsion Technology, 2011, 32(4): 557-563.(in Chinese) 张海波, 陈霆昊, 孙健国, 等. 一种新的航空发动机自适应模型设计与仿真[J]. 推进技术, 2011, 32(4): 557-563.
[11] Lu J, Guo Y Q, Zhang S G. Aeroengine on-board adaptive model based on improved hybrid Kalman filter[J].Journal of Aerospace Power, 2011, 26(11): 2593-2600.(in Chinese) 陆军, 郭迎清, 张书刚. 基于改进混合卡尔曼滤波器的航空发动机机载自适应模型[J]. 航空动力学报, 2011, 26(11): 2593-2600.
[12] Qiu X J, Huang J Q, Lu F, et al. Fault diagnosis and isolation of the component and sensor for aircraft engine[J]. Journal of Aerospace Power, 2012, 27(6): 1432-1440.
[13] Zhang S G, Guo Y Q, Lu J. Aircraft engine sensor fault diagnostics through dual-channel sensor measurements based on a bank of hybrid Kalman filters[J]. Computer Measurement & Control, 2012, 20(1): 21-24.(in Chinese) 张书刚, 郭迎清, 陆军. 基于混合卡尔曼滤波器组的航空发动机双通道传感器故障检测[J]. 计算机测量与控制, 2012, 20(1): 21-24.
[14] Kobayashi T, Simon D L. Hybrid Kalman filter approach for aircraft engine in-flight diagnostics: sensor fault detection case, NASA/TM-2006-214418[R]. Cleveland, OH: NASA, 2006.
[15] Kobayashi T. Aircraft engine sensor/actuator/component fault diagnosis using a bank of Kalman filters, NASA/CR-2003-212298[R]. Cleveland, OH: NASA, 2003.
[16] Kobayashi T, Simon D L. Evaluation of an enhanced bank of Kalman filters for in-flight aircraft engine sensor fault diagnostics, NASA/TM-2004-213203[R]. Cleveland, OH: NASA, 2004.
[17] Zhang S G, Guo Y Q, Lu J. Development of aircraft engine component-level models based on GasTurb/MATLAB[J]. Journal of Aerospace Power, 2012, 27(12): 2850-2856.(in Chinese) 张书刚, 郭迎清, 陆军. 基于GasTurb/MATLAB的航空发动机部件级模型研究与实现[J]. 航空动力学报, 2012, 27(12): 2850-2856.
[18] Kumar A, Viassolo D. Model-based fault tolerant control, NASA/CR-2008-215273[R]. Cleveland, OH: NASA, 2008. |