Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (22): 332000.doi: 10.7527/S1000-6893.2025.32000
• Electronics and Electrical Engineering and Control • Previous Articles
Yongze MIAO1,2, Xinggang FAN1,2(
), Dawei LI1,2, Wei SUN1,2, Lihao HUANG3,4, Shengqiao HAO3, Haiyang FANG1,2, Ronghai QU1, Yancheng YOU4
Received:2025-03-20
Revised:2025-05-19
Accepted:2025-07-15
Online:2025-07-29
Published:2025-07-18
Contact:
Xinggang FAN
E-mail:xinggangfan@hust.edu.cn
Supported by:CLC Number:
Yongze MIAO, Xinggang FAN, Dawei LI, Wei SUN, Lihao HUANG, Shengqiao HAO, Haiyang FANG, Ronghai QU, Yancheng YOU. Research advances in electrical propulsion systems for electric vertical take-off and landing aircrafts: A comprehensive review[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(22): 332000.
Table 1
Domestic and international major eVTOL electrical propulsion systems[33,46-49,51-53,55,57-58,64-65,67]
| 国家/厂商 | 图片 | 主要参数 | 技术特点 | 配套机型 | 成熟度 |
|---|---|---|---|---|---|
美国 Joby | ![]() | 236 kW 电机+电控峰值8.4 kW/kg | 液冷,外转子直驱式径向磁通永磁电机,全封闭,电机电控集成 | 美国Joby-S4 | 已装机,随整机适航取证中 |
美国 Archer | ![]() | 125 kW 系统连续 5 kW/kg | 液冷,内转子径向磁通永磁电机,全封闭,电机电控集成 | 美国Archer Midnight | 已装机,随整机适航取证中 |
法国 Safran | ![]() | 125 kW 电机+电控峰值 5 kW/kg | 风冷,内转子径向磁通永磁电机,全封闭,电机电控集成 | 中国时的科技,Aura Aero | 全球首款针对电驱系统获得EASA认证 |
德国 西门子 SP200D | ![]() | 204 kW 电机峰值 4.1 kW/kg | 定子闭式液冷+转子开式风冷, 内转子径向磁通永磁电机, 电机电控分离 | 第一代CityAirbus | 工程样机 |
| 美国MAGicALL | ![]() | 150 kW 电机+电控峰值4.3 kW/kg | 风冷,电机电控集成, 内转子径向磁通永磁电机, 集成温度、振动和健康监测模块 | 第二代CityAirbus | 已装机,随整机适航取证中 |
美国 H3X HPDM-250 | ![]() | 250 kW 系统连续 12 kW/kg | 闭式液冷,内转子径向电机,电机电控减速器集成,全增材制造绕组与机壳,耐高温陶瓷基绝缘材料 | 开发中 | |
美国 Magnix | ![]() | 350 kW 电机+电控峰值2.7 kW/kg | 闭式油冷, 内转子径向磁通永磁电机, 电机电控分离 | Eviation | 已装机,随整机适航取证中 |
英国 YASA | ![]() | 200 kW 电机+电控峰值5.4 kW/kg | 液冷,无轭铁心,轴向磁通电机 | 已装机,随整机适航取证中 | |
英国 罗罗 | ![]() | 150 kW 电机+电控密度3.9 kW/kg | 风冷,横向磁通电机, 电机电控分离 | 英国Vertical Aerospace (第一代) | 工程样机 |
日本电装与 美国霍尼韦尔 | ![]() | 100 kW 系统峰值 4 kW/kg | 内转子径向磁通永磁电机, 电机电控减速器集成 | 德国Lilium Jet | 开发中 |
| 比利时Magnax | ![]() | 200 kW 电机峰值 12.5 kW/kg | 风冷,轴向磁通电机,无磁轭设计,取向硅钢与层压式散热器 | 工程样机 | |
中国中国航发 动控所 | ![]() | 125 kW 电机峰值 3.8 kW/kg | 闭式油冷, 内转子直驱式径向磁通永磁, 电机电控集成 | 中国直升机设计研究所eVTOL | 已装机,随整机适航取证中 |
中国中国航发 动控所 | ![]() | 125 kW 系统峰值 4.2 kW/kg | 闭式油冷,内转子径向永磁电机,电机电控散热器集成 | 中国直升机设计研究所eVTOL | 已装机,随整机适航取证中 |
| 中国江苏迈吉易威 | ![]() | 130 kW 电机峰值 4 kW/kg | 风冷,径向磁通永磁电机, 最高转速2 100 r/min | 工程样机 | |
| 中国天津松正 | ![]() | 150 kW 电机峰值 3 kW/kg | 风冷+水冷, 外转子径向磁通永磁电机, 电机电控分离, 最高转速1 200 r/min | 工程样机 |
| [1] | 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937. |
| DENG J H. Technical status and development of electric vertical take-off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937 (in Chinese). | |
| [2] | KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]∥2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Reston: AIAA, 2018. |
| [3] | FARD M T, HE J B, HUANG H, et al. Aircraft distributed electric propulsion technologies: A review[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4067-4090. |
| [4] | QUAN Q, FU R, LI M X, et al. Practical distributed control for VTOL UAVs to pass a virtual tube[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(2): 342-353. |
| [5] | 中华人民共和国中央人民政府. 工业和信息化部等四部门关于印发绿色航空制造业发展纲要(2023-2035年)的通知[EB/OL]. (2023-10-10)[2025-02-21]. . |
| Central People’s Government of the People’s Republic of China. Notice of four departments includingthe ministry of industry and information technology on issuing the outline for the development of gre-en aviation manufacturing industry(2023-2035)[EB/OL]. (2023-10-10)[2025-02-21]. (in Chinese). | |
| [6] | SWAMINATHAN N, REDDY S R P, RAJASHEKARA K, et al. Flying cars and eVTOLs: Technology advancements, powertrain architectures, and design[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4105-4117. |
| [7] | HUANG H L, SHEN Z P, HUANG C, et al. Intelligent vehicle carriers to support general civilian purposes[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(10): 4292-4295. |
| [8] | ZHANG X Y, HUANG J G, HUANG Y H, et al. Intelligent amphibious ground-aerial vehicles: State of the art technology for future transportation[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 970-987. |
| [9] | STRAUBINGER A, ROTHFELD R, SHAMIYEH M, et al. An overview of current research and developments in urban air mobility-setting the scene for UAM introduction[J]. Journal of Air Transport Management, 2020, 87: 101852. |
| [10] | UGWUEZE O, STATHEROS T, BROMFIELD M A, et al. Trends in eVTOL aircraft development: The concepts, enablers and challenges[C]∥AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
| [11] | 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1): 021651. |
| KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651 (in Chinese). | |
| [12] | KIM H DAE, FELDER J L, TONG M T, et al. Turboelectric distributed propulsion benefits on the N3-X vehicle[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6): 558-561. |
| [13] | FELDER J L, BROWN G V, DAEKIM H, et al. Turboelectric distributed propulsion in a hybrid wing body aircraft[C]∥In Proceedings of 20th International Society for Airbreathing Engines (ISABE 2011), Gothenburg:International Society for Air Breathing Engines (ISABE), 2011. |
| [14] | 孙三亚, 邵壮, 周洲, 等. 面向eVTOL/eSTOL的分布式动力能源系统高精度建模与仿真研究[J]. 航空学报, 2025, 46(15): 131513. |
| SUN S Y, SHAO Z, ZHOU Z, et al. High-precision modeling and simulation of distributed propulsion energy systems for eVTOL/eSTOL[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(15): 131513 (in Chinese). | |
| [15] | AVIATION J, STOLL A, BEVIRT J. Development of eVTOL aircraft for urban air mobility at joby aviation[C]∥Proceedings of the Vertical Flight Society 78th Annual Forum. Fort Worth:The Vertical Flight Society, 2022. |
| [16] | Safran. Safran obtains EASA certification of the first electric motor for new air mobility[EB/OL]. (2025-02-03)[2025-02-23]. . |
| [17] | 张卓然, 陆嘉伟, 张伟秋, 等. 飞机电推进系统高效能电机及其驱动控制技术[J]. 中国电机工程学报, 2024, 44(16): 6610-6632. |
| ZHANG Z R, LU J W, ZHANG W Q, et al. High-performance electric machine and drive technologies for aircraft electric propulsion systems[J]. Proceedings of the CSEE, 2024, 44(16): 6610-6632 (in Chinese). | |
| [18] | GERADA D, XU Z Y, ZHANG F Y, et al. MW-class electric propulsion: Geared or direct drive?[C]∥2024 27th International Conference on Electrical Machines and Systems (ICEMS). Piscataway: IEEE Press, 2024: 2211-2214. |
| [19] | KADHIRESAN A R, DUFFY M J. Conceptual design and mission analysis for eVTOL urban air mobility flight vehicle configurations[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
| [20] | 张卓然, 于立, 李进才, 等. 飞机电气化背景下的先进航空电机系统[J]. 南京航空航天大学学报, 2017, 49(5): 622-634. |
| ZHANG Z R, YU L, LI J C, et al. Key technologies of advanced aircraft electrical machine systems for aviation electrification[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5): 622-634 (in Chinese). | |
| [21] | 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68. |
| HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68 (in Chinese). | |
| [22] | 胡雨. 通用飞机油电混合动力系统设计与优化[D]. 沈阳: 沈阳航空航天大学, 2014: 9-11. |
| HU Y. Design and optimization of a general aircraft’s hybrid electric propulsion system[D]. Shenyang: Shenyang Aerospace University, 2014: 9-11 (in Chinese). | |
| [23] | FEFERMANN Y, MAURY C, LEVEL C, et al. Hybrid-electric motive power systems for commuter transport applications[C]∥Proceedings of the 30th Congress of the International Council of the Aeronautical Sciences. Daejeon: International Council of the Aeronautical Sciences (ICAS), 2016: 25-30. |
| [24] | FREDERICKS W J, MOORE M D, BUSAN R C. Benefits of hybrid-electric propulsion to achieve 4x cruise efficiency for a VTOL UAV[C]∥2013 International Powered Lift Conference. Reston: AIAA, 2013. |
| [25] | 万雄, 王鹏, 张海龙, 等. 航空动力领域氢能关键技术研究现状与趋势[J]. 西华大学学报(自然科学版), 2024, 43(5): 8-15, 46. |
| WAN X, WANG P, ZHANG H L, et al. A review of the key technologies of hydrogen energy in the aviation engine industry[J]. Journal of Xihua University (Natural Science Edition), 2024, 43(5): 8-15, 46 (in Chinese). | |
| [26] | ADLER E J, MARTINS J R R A. Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts[J]. Progress in Aerospace Sciences, 2023, 141: 100922. |
| [27] | 张永杰, 王鸿琛, 崔博, 等. 氢能客机低温液氢储罐装机环境适应性研究进展[J]. 航空学报, 2025, 46(9): 629870. |
| ZHANG Y J, WANG H C, CUI B, et al. Research progress in installation environment adaptability of cryogenic liquid hydrogen tanks for hydrogen-powered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 629870 (in Chinese). | |
| [28] | 纪宇晗, 曾凡苍, 王翔宇, 等. 氢燃料电池支线飞机概念设计与性能分析[J]. 航空学报, 2025, 46(9): 630613. |
| JI Y H, ZENG F C, WANG X Y, et al. Concept design and performance analysis of hydrogen fuel cell regional aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 630613 (in Chinese). | |
| [29] | 纪宇晗, 吴佳茜, 曾凡苍. 氢燃料电池支线飞机关键技术与发展展望[J]. 航空科学技术, 2024, 35(1): 15-24. |
| JI Y H, WU J X, ZENG F C. Key technologies and development outlook of hydrogen fuel cell regional aircraft[J]. Aeronautical Science & Technology, 2024, 35(1): 15-24 (in Chinese). | |
| [30] | BORER N K, PATTERSON M D, VIKEN J K, et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[C]∥16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016. |
| [31] | Technologies DAP. XAEROS混动航空发动机项目[EB/OL]. (2024-01-06)[2025-02-21]. . |
| TECHNOLOGIES DAP. XAEROS hybrid aero-engine project[EB/OL]. (2024-01-06)[2025-02-21]. (in Chinese). | |
| [32] | MOORMAN R W. XTI Aircraft refines its TriFan 600 VTOL BizJet[EB/OL]. (2018-03-04)[2025-02-21]. . |
| [33] | HONEYWELL. Honeywell’s newest turbogenerator will power hybrid-electric aircraft, run on Biofuel[EB/OL]. (2021-03-05)[2025-02-23]. . |
| [34] | 宋薇薇, 杨凤田, 项松, 等. 氢能飞机研制进展及产业化前景分析[J]. 中国工程科学, 2023, 25(5): 192-201. |
| SONG W W, YANG F T, XIANG S, et al. Development progress and industrialization prospect of hydrogen-powered aircraft[J]. Strategic Study of CAE, 2023, 25(5): 192-201 (in Chinese). | |
| [35] | AVIATION WEEK. H2 Fly founder outlines vision for hydrogen-powered joby S4[EB/OL]. (2024-11-08)[2025-02-23]. . |
| [36] | 财联社. 低空经济何时真正“起飞”[EB/OL]. (2024-12-30)[2025-02-23]. . |
| CailianShe. When will the low-altitude economy really ‘take off’[EB/OL]. (2024-12-30)[2025-02-23]. (in Chinese). | |
| [37] | Federal Aviation Administration. Advisory circulars (ACs)[EB/OL]. (2024-06-27)[2025-02-23]. . |
| [38] | AYAR N, AHMED M, NOCON K, et al. Propulsion configuration design and analysis for an eVTOL passenger air shuttle[C]∥AIAA Propulsion and Energy 2021 Forum. Reston: AIAA, 2021. |
| [39] | NASA. Hazards analysis and failure modes and effects criticality analysis (FEMCA) of four concept vehicle propulsion systems[EB/OL]. (2019-06-18)[2025-06-06]. . |
| [40] | International organization for standardization (ISO). Quantified fault tree techniques for calculating hardware fault metrics according to ISO 26262[EB/OL]. (2017-04-28)[2025-06-04]. . |
| [41] | 观研报告网. eVTOL电机行业:后装市场前景广阔 新势力进入下竞争加剧 材料与散热为技术演进核心[EB/OL]. (2025-04-22)[2025-06-04]. . |
| Insight and Info. The eVTOL machine industry: The aftermarket has broad prospects, competition intensifies under the entry of new forces, and materials and heat dissipation are the core of technological evolution (2025-2032)[EB/OL]. (2025-04-22)[2025-06-04]. (in Chinese). | |
| [42] | SRIPAD S, VISWANATHAN V. The promise of energy-efficient battery-powered urban aircraft[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(45): e2111164118. |
| [43] | JANSEN R, BOWMAN C, JANKOVSKY A. Sizing power components of an electrically driven tail cone thruster and a range extender[C]∥16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016. |
| [44] | CAO W P, MECROW B C, ATKINSON G J, et al. Overview of electric motor technologies used for more electric aircraft (MEA)[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3523-3531. |
| [45] | BOLAM R C, VAGAPOV Y, ANUCHIN A. A review of electrical motor topologies for aircraft propulsion[C]∥2020 55th International Universities Power Engineering Conference (UPEC). Piscataway: IEEE Press, 2020. |
| [46] | MOTOR WATT. Joby S4 price and review-EV database[EB/OL]. (2025-01-17)[2025-02-23]. . |
| [47] | 电机产品技术前哨. 国外高密度电机技术最新进展(上)[EB/OL]. 2024-10-26[2025-02-23]. . |
| Motor Product Technology Outposts. The latest progress of foreign high power density motor technology (Part Ⅰ)[EB/OL]. (2024-10-26)[2025-02-23]. (in Chinese). | |
| [48] | Safran. ENGINeUS™ smart electric motors[EB/OL]. (2021-05-20)[2025-02-23]. . |
| [49] | Siemens. Electric flight[EB/OL]. (2019-06-18)[2025-02-23]. . |
| [50] | MAGicALL. Airbus selects MAGicALL to power CityAirbus NextGen[EB/OL]. (2022-05-10)[2025-02-23]. . |
| [51] | MAGicALL. Integrated motor | Controller: MAGiDRIVETM [EB/OL]. (2022-05-10)[2025-02-23]. . |
| [52] | H3X. H3 hits X 180 kW with HPDM-250 integrated motor drive[EB/OL]. (2023-10-10)[2025-02-23]. . |
| [53] | MagniX. Industry-leading electric powertrains[EB/OL]. (2024-05-22)[2025-02-23]. . |
| [54] | Federal Aviation Administration. Special conditions:Magnix USA, Inc., magni350 and magni650 model engines; electric engine airworthiness standards[EB/OL]. (2024-04-22)[2025-02-23]. . |
| [55] | TARAN N, KLINK D, HEINS G, et al. A comparative study of yokeless and segmented armature versus single sided axial flux PM machine topologies for electric traction[J]. IEEE Transactions on Industry Applications, 2022, 58(1): 325-335. |
| [56] | Evolito. Axial flux motors: A revolutionary approach[EB/OL]. (2023-12-05)[2025-02-23]. . |
| [57] | Rolls-Royce. Powering urban air mobility[EB/OL]. (2023-10-01)[2025-02-23]. . |
| [58] | 电机新材料. 不是只有YASA! 这家比利时公司正在专注轴向电机[EB/OL]. (2025-06-18)[2025-08-14]. . |
| Motor New Material. Not only YASA! This Belgian company is focusing on axial flux motors.[EB/OL]. (2025-06-18)[2025-08-14]. . | |
| [59] | 峰飞航空. 峰飞航空V2000CG获颁生产许可证[EB/OL]. (2024-12-24)[2025-07-14]. . |
| AutoFlight. AutoFlight’s CarryAll becomes world’s first 2-Ton eVTOL aircraft to receive production license[EB/OL]. (2024-12-24)[2025-07-14]. (in Chinese). | |
| [60] | 峰飞航空. V2000 CG动力系统高原测试圆满完成[EB/OL]. (2023-07-22)[2025-07-14]. . |
| AutoFlight. The plateau testing of V2000CG propulsion systems has been successfully completed[EB/OL]. (2023-07-22)[2025-07-14]. (in Chinese). | |
| [61] | 宗建安, 朱炳杰, 侯中喜, 等. 固旋翼垂直起降混电飞行器推进系统设计[J]. 航空学报, 2022, 43(5): 225395. |
| ZONG J A, ZHU B J, HOU Z X, et al. Design of hybrid-electric fixed-wing VTOL aircraft propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 225395 (in Chinese). | |
| [62] | 沃飞长空. 沃飞长空亮相中国航展,官宣旗下AE200批产构型[EB/OL]. (2024-11-10)[2025-02-23]. . |
| AEROFUGIA. Aerofugia at airshow China, announces its AE200 production configuration[EB/OL]. (2024-11-10)[2025-02-23]. (in Chinese). | |
| [63] | 施立煌. 卧龙电气-eVTOL产业链供应商系列[EB/OL]. (2024-07-02)[2025-01-07]. . |
| SHI L H. Wolong electric-eVTOL industry chain supplier series[EB/OL]. (2024-07-02)[2025-01-07]. (in Chinese). | |
| [64] | 电推进飞机. eVTOL核心电机供应商有哪些?[EB/OL]. (2025-04-07)[2025-08-14]. . |
| Electrical Propulsion Aircrafts. Who are the core motor suppliers for eVTOL?[EB/OL]. (2025-04-07)[2025-08-14]. (in Chinese). | |
| [65] | 要点纵航. 迈吉易威致力于高效轻质全电推进系统的研究与开发[EB/OL]. (2025-06-13)[2025-07-14]. . |
| Voyage Essentials. Meggie EW is dedicated to the research and development of highly efficient lightweight all-electric propulsion systems[EB/OL]. (2025-06-13)[2025-07-14]. (in Chinese). | |
| [66] | 精创电机. 小电机大动力,JC-V230电机单轴拉力超过210公斤![EB/OL]. (2024-12-20)[2025-02-23]. . |
| Motor Jingchuang. Small motor with big power, JC-V230 motor has a single-axis pulling force of over 210 kg![EB/OL]. (2024-12-20)[2025-02-23]. (in Chinese). | |
| [67] | 中国航发控制系统研究所. 中国航发动控所推进电机亮相央视助力eVTOL开启低空经济新年新征程[EB/OL]. (2025-02-14)[2025-02-23]. . |
| Aero Engine Corporation of China. Aero engine corporation of China’s propulsion motor appears on CCTV, helping eVTOL to start the new year’s journey of low altitude economy[EB/OL]. (2025-02-14)[2025-02-23]. (in Chinese). | |
| [68] | 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报, 2021, 42(3): 624037. |
| HUANG J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624037 (in Chinese). | |
| [69] | WANG R Y, LIANG Z Y, FAN X G, et al. A novel variable impedance PM machines with separated fault tolerant ring[J]. IEEE Transactions on Industry Applications, 2025, 61(2): 2947-2960. |
| [70] | WANG R Y, LI D W, FAN X G, et al. Analysis of short-circuit current automatic suppression for toroidal winding PM machines[J]. IEEE Transactions on Power Electronics, 2024, 39(6): 7510-7524. |
| [71] | ZHAO W X, ZHENG J Q, JI J H, et al. Star and delta hybrid connection of a FSCW PM machine for low space harmonics[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9266-9279. |
| [72] | FAN X G, ZHANG B, QU R H, et al. Comparative thermal analysis of IPMSMs with integral-slot distributed-winding (ISDW) and fractional-slot concentrated-winding (FSCW) for electric vehicle application[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 3577-3588. |
| [73] | DUBOIS A, VAN DER GEEST M, BEVIRT J, et al. Design of an electric propulsion system for SCEPTOR’s outboard nacelle[C]∥16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016. |
| [74] | Aero Joby. Electric motor for aircraft propulsion:US20220200383A1[P]. 2022-06-23. |
| [75] | MUNRO Live. Joby aviation electric motor can generate more torque than an F 350![EB/OL]. (2024-06-26)[2025-07-14]. . |
| [76] | LIANG Z Y, ZHAO Y, LI D W, et al. Analysis of a novel consequent-pole halbach-array dual-electrical-port dual-mechanical-port machine[C]∥2023 26th International Conference on Electrical Machines and Systems (ICEMS). Piscataway: IEEE Press, 2023: 5180-5184. |
| [77] | LI D W, QU R H, ZHU Z. Comparison of halbach and dual-side vernier permanent magnet machines[J]. IEEE Transactions on Magnetics, 2014, 50(2): 7019804. |
| [78] | ZHAO Y, REN X, FAN X G, et al. A high power factor permanent magnet vernier machine with modular stator and yokeless rotor[J]. IEEE Transactions on Industrial Electronics, 2023, 70(7): 7141-7152. |
| [79] | LEE D S, BALACHANDRAN T, SIRIMANNA S, et al. Detailed design and prototyping of a high power density slotless PMSM[J]. IEEE Transactions on Industry Applications, 2023, 59(2): 1719-1727. |
| [80] | HE X H, YAN L, XIANG P J, et al. Multimaterial topology optimization method of surface-mounted PMSM rotor poles based on variable density representation[J]. IEEE/ASME Transactions on Mechatronics, 2025, 30(1): 436-446. |
| [81] | KAHOURZADE S, MAHMOUDI A, PING H W, et al. A comprehensive review of axial-flux permanent-magnet machines[C]∥Canadian Journal of Electrical and Computer Engineering. Piscataway: IEEE Press, 2014: 19-33. |
| [82] | 章恒亮, 花为. 分布式驱动系统用轮毂电机及其技术综述[J]. 中国电机工程学报, 2024, 44(7): 2871-2886. |
| ZHANG H L, HUA W. Overview of in-wheel traction machine and its key techniques for distributed-driving system[J]. Proceedings of the CSEE, 2024, 44(7): 2871-2886 (in Chinese). | |
| [83] | 关涛, 刘大猛, 何永勇. 永磁轮毂电机技术发展综述[J]. 电工技术学报, 2024, 39(2): 378-396. |
| GUAN T, LIU D M, HE Y Y. Review on development of permanent magnet in-wheel motors[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 378-396 (in Chinese). | |
| [84] | GENG W W, WANG J, FU Y, et al. Design and performance analysis of a novel axial-flux IPM machine for electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2025, 11(2): 5569-5577. |
| [85] | LI X, GUO H, XU J Q. Electromagnetic design of high torque density 3D magnetic circuit motor for aviation propulsion[C]∥2023 26th International Conference on Electrical Machines and Systems (ICEMS). Piscataway: IEEE Press, 2023: 2102-2106. |
| [86] | XIANG P J, YAN L, GE L J, et al. Development of a radial-flux machine with multi-shaped magnet rotor and non-ferromagnetic yoke for low torque ripple and rotor mass[J]. IEEE Transactions on Industry Applications, 2025, 61(2): 2897-2910. |
| [87] | 王润宇, 李大伟, 范兴纲, 等. 增材制造技术在电机中的应用综述[J]. 中国电机工程学报, 2022, 42(1): 385-406. |
| WANG R Y, LI D W, FAN X G, et al. A review on application of additive manufacturing technology in electrical machines[J]. Proceedings of the CSEE, 2022, 42(1): 385-406 (in Chinese). | |
| [88] | HE Y, ZHAO W X, TANG H Y, et al. Auxiliary teeth design to reduce short-circuit current in permanent magnet generators[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(3): 198-205. |
| [89] | WANG Y L, NUZZO S, ZHANG H, et al. Challenges and opportunities for wound field synchronous generators in future more electric aircraft[J]. IEEE Transactions on Transportation Electrification, 2020, 6(4): 1466-1477. |
| [90] | CHEN Y G, LIU B. Design and analysis of a five-phase fault-tolerant permanent magnet synchronous motor for aerospace starter-generator system[J]. IEEE Access, 2019, 7: 135040-135049. |
| [91] | ZHAO W X, XU L, LIU G H. Overview of permanent-magnet fault-tolerant machines: Topology and design[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(1): 51-64. |
| [92] | LI Y X, ZHU Z Q, THOMAS A. Generic slot and pole number combinations for novel modular permanent magnet dual 3-phase machines with redundant teeth[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1676-1687. |
| [93] | SWANKE J, JAHNS T M. Reliability analysis of a fault-tolerant integrated modular motor drive (IMMD) for an urban air mobility (UAM) aircraft using Markov chains[C]∥AIAA Propulsion and Energy 2021 Forum. Reston: AIAA, 2021. |
| [94] | WANG R Y, LI D W, FAN X G, et al. A novel variable impedance PM fault-tolerant machine for ultrahigh-reliability applications[J]. IEEE Transactions on Industrial Electronics, 2024, 71(7): 6852-6862. |
| [95] | DONG C F, QIAN Y P, ZHANG Y J, et al. A review of thermal designs for improving power density in electrical machines[J]. IEEE Transactions on Transportation Electrification, 2020, 6(4): 1386-1400. |
| [96] | VALENZUELA M A, TAPIA J A. Heat transfer and thermal design of finned frames for TEFC variable speed motors[J]. IEEE Transactions on Industrial Electronics, 2008, 55(10): 3500-3508. |
| [97] | 张典, 梁培鑫. 电动飞机推进电机发展及关键技术综述[J]. 航空科学技术, 2024, 35(3): 1-10. |
| ZHANG D, LIANG P X. Overview of the development and key technologies of electric aircraft propulsion motors[J]. Aeronautical Science & Technology, 2024, 35(3): 1-10 (in Chinese). | |
| [98] | CHIN J C, TALLERICO T F, SMITH A D. X-57 Mod 2 motor thermal analysis[C]∥AIAA Aviation Forum. Reston: AIAA, 2019. |
| [99] | ULBRICH S, KOPTE J, PROSKE J. Cooling fin optimization on a TEFC electrical machine housing using a 2-D conjugate heat transfer model[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1711-1718. |
| [100] | ZHENG Z C, FAN X G, LI D W, et al. Design of integrated radiator for aviation propulsion motor based on structural reuse[C]∥2024 International Conference on Electrical Machines (ICEM). Piscataway: IEEE Press, 2024: 1-7. |
| [101] | ZHANG B, QU R H, WANG J, et al. Thermal model of totally enclosed water-cooled permanent-magnet synchronous machines for electric vehicle application[J]. IEEE Transactions on Industry Applications, 2015, 51(4): 3020-3029. |
| [102] | CLARKE S, REDIFER M, PAPATHAKIS K, et al. X-57 power and command system design[C]∥2017 IEEE Transportation Electrification Conference and Expo (ITEC). Piscataway: IEEE Press, 2017: 393-400. |
| [103] | FAN X G, LI D W, QU R H, et al. Water cold plates for efficient cooling: Verified on a permanent-magnet machine with concentrated winding[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5325-5336. |
| [104] | SIKORA M, VLACH R, NAVARATIL P. The unusual water cooling applied on small asynchronous motor[J]. Engineering Mechanics, 2011, 18(2): 143-153. |
| [105] | 张卓然, 张健, 胡光源, 等. 多电飞机高功率密度高效电机系统热管理技术[J]. 航空学报, 2025, 46(6): 531380. |
| ZHANG Z R, ZHANG J, HU G Y, et al. Thermal management technologies of high-power-density high efficiency electric machine systems for more electric aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531380 (in Chinese). | |
| [106] | WANG R Y, FAN X G, LI D W, et al. Convective heat transfer characteristics on end-winding of stator immersed oil-cooled electrical machines for aerospace applications[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4265-4278. |
| [107] | CAMILLERI R, HOWEY D A, MCCULLOCH M D. Predicting the temperature and flow distribution in a direct oil-cooled electrical machine with segmented stator[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 82-91. |
| [108] | TAN H, FAN X G, LI D W, et al. Additively manufactured winding design for thermal improvement of an oil-cooled axial flux permanent magnet machine[J]. IEEE Transactions on Transportation Electrification, 2024, 10(1): 1911-1922. |
| [109] | WOHLERS C, JURIS P, KABELAC S, et al. Design and direct liquid cooling of tooth-coil windings[J]. Electrical Engineering, 2018, 100(4): 2299-2308. |
| [110] | WANG J X, LI Y Z, WANG S N, et al. Experimental investigation of the thermal control effects of phase change material based packaging strategy for on-board permanent magnet synchronous motors[J]. Energy Conversion and Management, 2016, 123: 232-242. |
| [111] | AYAT S, DAGUSÉ B, KHAZAKA R. Design considerations of windings formed with hollow conductors cooled with phase change material[C]∥2019 IEEE Energy Conversion Congress and Exposition (ECCE). Piscataway: IEEE Press, 2019: 5652-5658. |
| [112] | LI B, YUAN Y, GAO P, et al. Cooling structure design for an outer-rotor permanent magnet motor based on phase change material[J]. Thermal Science and Engineering Progress, 2022, 34: 101406. |
| [113] | BRADFORD M. The application of heat pipes to cooling rotating electrical machines[C]∥1989 Fourth International Conference on Electrical Machines and Drives Conference (IEMDC). London: IET, 1989: 145-149. |
| [114] | PUTRA N, ARIANTARA B. Electric motor thermal management system using L-shaped flat heat pipes[J]. Applied Thermal Engineering, 2017, 126: 1156-1163. |
| [115] | ZHANG X T, LI L Y, ZHANG C M. Mass optimization method of a surface-mounted permanent magnet synchronous motor based on a lightweight structure[J]. IEEE Access, 2020, 8: 40431-40444. |
| [116] | JOBY AERO. Aircraft propulsion unit: US20230107180A1[P]. 2023-04-06. |
| [117] | GRAVES S, TEPE A D, MOORE R W. Vertical takeoff and landing aircraft electric engine configuration: US11787551[P]. 2023-10-17. |
| [118] | KOCH S F, PETER M, FLEISCHER J. Lightweight design and manufacturing of composites for high-performance electric motors[J]. Procedia CIRP, 2017, 66: 283-288. |
| [119] | BEVIRT J, MIKIC G V, MILIA J, et al. Aircraft drag reduction system and internally cooled electric motor system and aircraft using same: US20190329858[P]. 2019-10-31. |
| [120] | IVANOV N S, ZHURAVLEV S V, KHARKINA O A, et al. Electric machines with high specific power[J]. Russian Electrical Engineering, 2022, 93(10): 621-630. |
| [121] | 驱动视界. 广汽埃安夸克2.0高速电驱[EB/OL]. (2025-01-14)[2025-02-23]. . |
| Vision Drive. GAC AION Quark 2.0 high speed electric drive[EB/OL]. (2025-01-14)[2025-02-23]. (in Chinese). | |
| [122] | ZHOU K, SUN W T, LIU Q Y, et al. Design strategy to simultaneously enhance electrical conductivity and strength: Cold-drawn copper-based composite wire with in situ graphene[J]. Journal of Materials Research and Technology, 2024, 30: 8925-8937. |
| [123] | 周川, 路新, 贾成厂, 等. 碳纳米管增强铜基复合材料的制备、力学性能及电导率[J]. 稀有金属材料与工程, 2019, 48(4): 1249-1255. |
| ZHOU C, LU X, JIA C C, et al. Preparation, mechanical properties and electrical conductivity of carbon nanotube reinforced Cu matrix composites[J]. Rare Metal Materials and Engineering, 2019, 48(4): 1249-1255 (in Chinese). | |
| [124] | 碳垣科技. 碳垣科技碳纳米管、石墨烯铜入围重点材料首批次应用示范指导目录[EB/OL]. (2024-06-28)[2025-02-20]. . |
| Tanrand New Material Tech. Tanrand technology carbon nanotubes, graphene copper in the first batch of key materials sub application demonstration guidance catalogue. [EB/OL]. (2024-06-28)[2025-02-20]. . | |
| [125] | GAO Z S, ZUO T T, WANG M, et al. In-situ graphene enhanced copper wire: A novel electrical material with simultaneously high electrical conductivity and high strength[J]. Carbon, 2022, 186: 303-312. |
| [126] | 陈前, 赵美玲, 廖继红, 等. 轻量化高效率永磁电机及其控制技术综述[J]. 电气工程学报, 2023, 18(4): 3-19. |
| CHEN Q, ZHOA M L, LIAO J H, et al. Review on lightweight and high efficiency permanent magnet motor and its control techniques[J]. Journal of Electrical Engineering, 2023, 18(4): 3-19 (in Chinese). | |
| [127] | AGHABALI I, BAUMAN J, KOLLMEYER P J, et al. 800-V electric vehicle powertrains: Review and analysis of benefits, challenges, and future trends[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 927-948. |
| [128] | 李明. 英国零碳飞行电推进系统路线图分析[J]. 航空动力, 2024(4): 14-19. |
| LI M. Analysis to electrical propulsion systems roadmap of FlyZero[J]. Aerospace Power, 2024(4): 14-19 (in Chinese). | |
| [129] | SHE X, HUANG A Q, LUCÍA Ó, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. |
| [130] | LIANG S Y, HE L K, WU Y, et al. Overview and analysis of electric power systems for more/all electric aircraft[C]∥IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2023: 1-6. |
| [131] | 王学梅. 宽禁带碳化硅功率器件在电动汽车中的研究与应用[J]. 中国电机工程学报, 2014, 34(3): 371-379. |
| WANG X M. Researches and applications of wide bandgap SiC power devices in electric vehicles[J]. Proceedings of the CSEE, 2014, 34(3): 371-379 (in Chinese). | |
| [132] | 新能源高压架构与安全. 深度集成功率砖的电机控制器设计方案解析[EB/OL]. (2025-05-21)[2025-06-04]. . |
| High-Voltage Architecture and IP Security in New Energy Vehicles. An in-depth analysis of the design solution for integrated power brick motor controllers[EB/OL].(2025-05-21)[2025-06-04]. (in Chinese). | |
| [133] | 宽禁带半导体技术创新联盟. 单机SiC用量超480颗!eVTOL市场未来可期?[EB/OL]. (2025-02-26)[2025-03-10]. . |
| Innovation Association of Wide Bandgap Semiconductor Technology. Single eVTOL aircraft require over 480 SiC chips! Is the future of the eVTOL market promising[EB/OL]. (2025-02-26)[2025-03-10]. (in Chinese). | |
| [134] | 王宇, 张成糕, 郝雯娟. 永磁电机及其驱动系统容错技术综述[J]. 中国电机工程学报, 2022, 42(1): 351-372. |
| WANG Y, ZHANG C G, HAO W J. Overview of fault-tolerant technologies of permanent magnet brushless machine and its control system[J]. Proceedings of the CSEE, 2022, 42(1): 351-372 (in Chinese). | |
| [135] | ZHANG Z R, HUANG J, JIANG Y Y, et al. Overview and analysis of PM starter/generator for aircraft electrical power systems[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(2): 117-131. |
| [136] | 罗翔宇, 刘自程, 王光宇. 多相电机容错运行技术综述[J]. 控制与信息技术, 2025(2): 1-13. |
| LUO X Y, LIU Z C, WANG G Y. A review of fault-tolerant operation technologies for multiphase motors[J]. Control and Information Technology, 2025(2): 1-13 (in Chinese). | |
| [137] | 陶涛, 赵文祥, 程明, 等. 多相电机容错控制及其关键技术综述[J]. 中国电机工程学报, 2019, 39(2): 316-326, 629. |
| TAO T, ZHAO W X, CHENG M, et al. Review on fault-tolerant control of multi-phase machines and their key technologies[J]. Proceedings of the CSEE, 2019, 39(2): 316-326, 629 (in Chinese). | |
| [138] | HU Y S, HUANG S D, WU X, et al. Control of dual three-phase permanent magnet synchronous machine based on five-leg inverter[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 11071-11079. |
| [139] | WANG P Y, GONG S, SUN X W, et al. Fault-tolerant reconfiguration topology and control strategy for symmetric open-winding multiphase machines[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 8656-8666. |
| [140] | 刘自程, 李永东, 郑泽东. 多相电机控制驱动技术研究综述[J]. 电工技术学报, 2017, 32(24): 17-29. |
| LIU Z C, LI Y D, ZHENG Z D. Control and drive techniques for multiphase machines: A review[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 17-29 (in Chinese). | |
| [141] | DU Y X, ZHAO W X, HU Y H, et al. Review of fault-tolerant control for motor inverter failure with operational quality considered[J]. CES Transactions on Electrical Machines and Systems, 2024, 8(2): 202-215. |
| [142] | RYU H M, KIM J W, SUL S K. Synchronous-frame current control of multiphase synchronous motor under asymmetric fault condition due to open phases[J]. IEEE Transactions on Industry Applications, 2006, 42(4): 1062-1070. |
| [143] | SUN J W, ZHENG Z D, LI C, et al. Optimal fault-tolerant control of multiphase drives under open-phase/open-switch faults based on DC current injection[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5928-5936. |
| [1] | Jufeng YANG, Wenxin HUANG, Jiukang SUN, Zhongchen MA, Guodong FAN, Xi ZHANG. Joint estimation of multidimensional battery health indicators for electric vertical take-off and landing aircraft applications [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(14): 331440-331440. |
| [2] | Fanteng MENG, Yong QIN, Jing CUI, Yunpeng WU, Zicheng ZHANG, Shaowei WEI. Unknown risk detection in external environment of railroad using UAV images [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531262-531262. |
| [3] | Yongnan JIA. A scheme for unmanned aerial system traffic management in low-altitude airspace [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531399-531399. |
| [4] | Yongguang JIN, Fangwei YE, Qihui WU. Location privacy protection mechanisms for UAVs with Remote ID [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531341-531341. |
| [5] | Wenxiao HU, Di MU, Zhi LI, Yingyi GUO, Xinmin CHEN. Key technical issues and innovation strategies for development of low-altitude economy [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531539-531539. |
| [6] | Yuhan LI, Shuguang ZHANG, Yibing WU. Handling qualities assessing of SVO-based eVTOL aircraft through EMG and eye data [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531315-531315. |
| [7] | Ruokun QU, Zhiyuan WANG, Yelu LIU, Chenglong LI, Bo JIANG. UAV visual positioning technology for urban air mobility [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531168-531168. |
| [8] | Xinglong WANG, Youjie WANG. Safety interval evaluation for multi-aircraft eVTOL in urban low altitude [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 330604-330604. |
| [9] | Jinghui DENG. Technical status and development of electric vertical take⁃off and landing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937-529937. |
| [10] | LIU Ling-shun;HU Yu-wen;HUANG Wen-xin. Research on Calculation of Leakage Reactance of Dual Stator-Winding Induction Generator [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(1): 109-114. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

