Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (1): 330604.doi: 10.7527/S1000-6893.2024.30604
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Received:
2024-04-25
Revised:
2024-06-04
Accepted:
2024-06-18
Online:
2025-01-15
Published:
2024-06-20
Contact:
Xinglong WANG
E-mail:xinglong1979@163.com
Supported by:
CLC Number:
Xinglong WANG, Youjie WANG. Safety interval evaluation for multi-aircraft eVTOL in urban low altitude[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 330604.
Table 2
Mainstream eVTOL model parameters
eVTOL机型 | 翼型 | 有效载荷质量/kg | 尺寸(长度×翼展×高度)/(m×m×m) | 载客量 | 最大速度/(km·h-1) | 机型分类 |
---|---|---|---|---|---|---|
EH216-S | 多旋翼 | 200 | 3.2×5.63×1.855 | 2 | 130 | 轻型 |
Volocopter VoloCity | 多旋翼 | 200 | 4.8×11.3×2.5 | 2 | 110 | 轻型 |
Volocopter 2X | 多旋翼 | 160 | 3.2×9.15×2.15 | 2 | 102 | 轻型 |
小鹏旅行者X2 | 多旋翼 | 200 | 2.2×4.79×1.36 | 2 | 130 | 轻型 |
Wisk Aero Cora | 复合翼 | 181 | 6.4×11×2.2 | 2 | 180 | 轻型 |
Vahana Alpha Two | 复合翼 | 90 | 5.86×6.25×2.81 | 1 | 200 | 轻型 |
Aurora Flight PAV | 复合翼 | 225 | 9.4×8.53×2.3 | 2 | 180 | 轻型 |
Terrafugia TF-2A | 复合翼 | 200 | 7.2×8.5×2.03 | 2 | 180 | 轻型 |
Archer Midnight | 复合翼 | 456 | 9.1×14.3×2.9 | 5 | 241 | 中型 |
盛世龙 | 复合翼 | 350 | 11.6×14.5×2.6 | 5 | 200 | 中型 |
Joby Aviation S4 | 复合翼 | 453 | 6.4×11.6×3.2 | 5 | 322 | 中型 |
TCab Tech E20 | 复合翼 | 450 | 6×12×3.4 | 5 | 320 | 中型 |
Lilium Jet 7 | 复合翼 | 8.5×13.9×3.2 | 7 | 280 | 重型 | |
AE200-100 | 复合翼 | 9.1×14.5×3.5 | 6 | 320 | 重型 |
Table 6
Collision model parameters between eVTOLs of the same type
类型 | a/m | b/m | c/m | h/m | 相对速度/(km·h-1) | ||||
---|---|---|---|---|---|---|---|---|---|
纵侧向 | 垂直 | ||||||||
轻型多旋翼 | 7.7 | 7.7 | 3.4 | 2.0 | 118 | 20、47、8 | 74、47、19 | 0.520 5 | 0.523 4 |
轻型复合翼 | 7.2 | 8.6 | 2.3 | 185 | 30、70、13 | 111、71、29 | 0.583 9 | 0.494 3 | |
中型复合翼 | 8.3 | 13.1 | 3.0 | 271 | 48、111、20 | 174、111、45 | 0.711 2 | 0.557 0 | |
重型复合翼 | 8.8 | 14.2 | 3.4 | 300 | 51、118、21 | 186、118、48 | 0.770 7 | 0.584 0 |
1 | THIPPHAVONG D P, APAZA R, BARMORE B, et al. Urban air mobility airspace integration concepts and considerations: AIAA-2018-3676[R]. Reston: AIAA, 2018. |
2 | HILL B, DECARME D. Urban air mobility (UAM) vision concept of operations (ConOps) UAM maturity level (UML)-4[C]∥ UAM UML-4 Vision ConOps Workshops. Washington, D.C.: NASA, 2021. |
3 | Federal Aviation Administration. Urban air mobility (UAM) concept of operations: Version 1.0[R]. Washington, D.C.: NASA, 2020. |
4 | Federal Aviation Administration. Urban air mobility (UAM) concept of operations: Version 2.0[R]. Washington, D.C.: NASA, 2023. |
5 | 李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35-54. |
LI C L, QU W Q, LI Y D, et al. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54 (in Chinese). | |
6 | 张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报, 2021, 42(7): 024638. |
ZHANG H H, ZOU Y Y, ZHANG Q Q, et al. Future urban air mobility management: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024638 (in Chinese). | |
7 | HUSSAIN A, Rutgers V. Change is in the air: The elevated future of mobility: What’s next on the horizon [R/OL]. (2019-06-03)[2024-04-25]. . |
8 | Morgan Stanley Research. Flying cars: Investment implications of autonomous urban air mobility[R]. New York: Morgan Stanley, 2018. |
9 | 中国民用航空局. 亿航EH216-S型无人驾驶航空器系统专用条件: [S]. 2022-02-22. |
Civil Aviation Administration of China. EH216-S unmanned aerial vehicle system special conditions: [S]. 2022-02-22 (in Chinese). | |
10 | 中国民航网.亿航智能EH216-S获中国民航局颁发生产许可证[EB/OL]. (2024-04-07)[2024-04-25]. . |
Civil Aviation Administration of China. EH intelligent EH216-S receives production licence from Civil Aviation Administration of China (CAAC) [EB/OL]. (2024-04-07)[2024-04-09]. (in Chinese). | |
11 | 廖小罕, 屈文秋, 徐晨晨, 等. 城市空中交通及其新型基础设施低空公共航路研究综述[J]. 航空学报, 2023, 44(24): 028521. |
LIAO X H, QU W Q, XU C C, et al. A review of urban air mobility and its new infrastructure low-altitude public routes[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 028521 (in Chinese). | |
12 | REICH P G. Analysis of long-range air traffic systems: Separation standards-I[J]. The Journal of Navigation, 1997, 50(3): 436-447. |
13 | BROOKER P. Lateral collision risk in air traffic track systems: A ‘Post-Reich’ event model[J]. The Journal of Navigation, 2003, 56(3): 399-409. |
14 | BROOKER P. Longitudinal collision risk for ATC track systems: A hazardous event model[J]. Journal of Navigation, 2006, 59(1): 55-70. |
15 | 徐肖豪, 李冬宾, 李雄. 飞行间隔安全评估研究[J]. 航空学报, 2008, 30(6): 1411-1418. |
XU X H, LI D B, LI X. Research on safety assessment of flight separation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 30(6): 1411-1418 (in Chinese). | |
16 | 徐肖豪, 王振宇, 赵鸿盛. 基于Event的侧向碰撞风险改进模型[J]. 中国民航大学学报, 2008, 26(3): 1-4. |
XU X H, WANG Z Y, ZHAO H S. Improved lateral collision risk model based on Event[J]. Journal of Civil Aviation University of China, 2008, 26(3): 1-4 (in Chinese). | |
17 | 戴福青, 周启. 基于Event的垂直碰撞风险改进模型研究[J]. 中国民航大学学报, 2011, 29(6): 4-7. |
DAI F Q, ZHOU Q. Study on improved vertical collision risk model based on Event[J]. Journal of Civil Aviation University of China, 2011, 29(6): 4-7 (in Chinese). | |
18 | 黄晋, 焦瑶瑶, 刘厚荣, 等. 基于改进Event模型的交叉航路碰撞风险分析[J]. 航空计算技术, 2023, 53(1): 11-15. |
HUANG J, JIAO Y Y, LIU H R, et al. Cross route collision risk analysis based on improved Event model[J]. Aeronautical Computing Technique, 2023, 53(1): 11-15 (in Chinese). | |
19 | 王莉莉, 鲁胜男. 平行进近偏航下Event碰撞风险模型[J]. 中国安全科学学报, 2019, 29(11): 8-13. |
WANG L L, LU S N. Collision risk of parallel approach in yaw based on Event model[J]. China Safety Science Journal, 2019, 29(11): 8-13 (in Chinese). | |
20 | 张兆宁, 时瑞军. 自由飞行下改进的Event碰撞风险计算模型[J]. 中国安全科学学报, 2015, 25(7): 35-40. |
ZHANG Z N, SHI R J. Study on free flight collision risk based on improved Event model[J]. China Safety Science Journal, 2015, 25(7): 35-40 (in Chinese). | |
21 | ZHANG Z Y, ZHANG J, WANG P, et al. Research on operation of UAVs in non-isolated airspace[J]. Computers, Materials & Continua, 2018, 57(1): 151-166. |
22 | 邓力. 无人机与民航客机碰撞概率研究[J]. 南京理工大学学报(自然科学版), 2019, 43(1): 122-128. |
DENG L. Research of collision probability of unmanned aerial vehicles and civil airplane[J]. Journal of Nanjing University of Science and Technology, 2019, 43(1): 122-128 (in Chinese). | |
23 | 韩鹏, 周斌, 张恩宇. 终端区多场景有人机/无人机空中碰撞风险研究[J]. 西华大学学报(自然科学版), 2022, 41(2): 8-11. |
HAN P, ZHOU B, ZHANG E Y. Air collision risk of manned drones in multiple scenarios in the terminal area[J]. Journal of Xihua University (Natural Science Edition), 2022, 41(2): 8-11 (in Chinese). | |
24 | ZHANG Z G, LU X H, ZHANG Y C, et al. Research on collision risk between light unmanned arial vehicles and aircraft windshield[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2023, 40(5): 534-546. |
25 | 甄然, 赵正, 康兢, 等. 基于EVENT改进模型的碰撞风险研究[J]. 河北工业科技, 2021, 38(1): 7-11. |
ZHEN R, ZHAO Z, KANG J, et al. Research on collision risk based on improved EVENT model[J]. Hebei Journal of Industrial Science and Technology, 2021, 38(1): 7-11 (in Chinese). | |
26 | 张洪海, 李博文, 刘皞, 等. 自由空域下多旋翼无人机安全间隔标定方法[J]. 系统工程与电子技术, 2023, 45(10): 3149-3156. |
ZHANG H H, LI B W, LIU H, et al. Demarcation method of safety separation for multi-rotor UAV in free airspace[J]. Systems Engineering and Electronics, 2023,45(10): 3149-3156 (in Chinese). | |
27 | ZHONG G, DU S, ZHANG H H, et al. Demarcation method of safety separations for sUAV based on collision risk estimation[J]. Reliability Engineering & System Safety, 2024, 242: 109738. |
28 | ZOU Y Y, ZHANG H H, ZHONG G, et al. Collision probability estimation for small unmanned aircraft systems[J]. Reliability Engineering & System Safety, 2021, 213: 107619. |
29 | 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937. |
DENG J H. Technical status and development of electric vertical take-off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937 (in Chinese). | |
30 | 孟祥伟, 张平. 低空非管制空域航空器碰撞风险研究[C]∥ 2010年航空器适航与空中交通管理学术年会. 2010: 127-134. |
MENG X W, ZHANG P. Research on aircraft mid-air collision risk in low-altitude uncontrolled airspace[C]∥ 2010 Annual Conference on Airworthiness and Air Traffic Management. 2010: 127-134 (in Chinese). | |
31 | 王莉莉, 阳杰. 基于速度随机分布的低空空域小型无人机碰撞风险评估模型[J]. 交通信息与安全, 2022, 40(4):64-70. |
WANG L L, YANG J. A collision risk model for small UAVs based on velocity random distribution in low-altitude airspace[J]. Journal of Transport Information and Safety, 2022, 40(4): 64-70 (in Chinese). | |
32 | EASA. Means of compliance with the special condition VTOL[EB/OL].(2021-05-12)[2024-04-25]. . |
33 | 中国民用航空局航空器适航审定司. 民用无人驾驶航空器系统适航审定分级分类和系统安全性分析指南: AC-21-AA-2022-40 [S]. 2022-12-21. |
Department of Aircraft Airworthiness Certification, Civil Aviation Administration of China. Civil unmanned aerial vehicle system airworthiness certification classification and system safety analysis guide: AC-21-AA-2022-40 [S]. 2022-12-21 (in Chinese). |
[1] | Jinghui DENG. Technical status and development of electric vertical take⁃off and landing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937-529937. |
[2] | Xiaohan LIAO, Wenqiu QU, Chenchen XU, Hongbo HE, Junwei WANG, Weibo SHI. A review of urban air mobility and its new infrastructure low⁃altitude public routes [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 28521-028521-. |
[3] | WU Zixuan, ZHANG Ning, GAO Kaiye, PENG Rui. Flight trip fuel volume prediction based on random forest with adjustment to risk preference [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 224933-224933. |
[4] | ZHANG Honghai, ZOU Yiyuan, ZHANG Qiqian, LIU Hao. Future urban air mobility management: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 24638-024638. |
[5] | LI Siping, ZHOU Yaoming. External connectivity of Mainland China's air transport network in COVID-19 pandemic [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 324569-324569. |
[6] | LI Anti, LI Chenglong, WU Dingjie, WEI Peng. Collision avoidance decision method for UAVs in random search combined with jump point guidance [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(8): 323726-323726. |
[7] | QUAN Quan, LI Gang, BAI Yiqin, FU Rao, LI Mengxin, KE Chenxu, CAI Kaiyuan. Low altitude UAV traffic management:An introductory overview and proposal [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 23238-023238. |
[8] | ZHANG Shuai, XIA Ming, ZHONG Bowen. Evolution and technical factors influencing civil aircraft aerodynamic configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(1): 30-44. |
[9] | HAN Song-chen;PEI Cheng-gong;SUI Dong;ZUO Ling. Security Analysis of Area Navigation Parallel Airway [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(6): 1023-1027. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341