Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (20): 532069.doi: 10.7527/S1000-6893.2025.32069
• Special Issue: Key Technologies for Supersonic Civil Aircraft • Previous Articles
Junfu LI1,2,3, Yan ZHAO2(
), Wei WANG2, Lu XIE2, Hui ZHANG2, Long WANG2, Lin YUAN2, Yuting TAN2, Yu NING2,3
Received:2025-04-02
Revised:2025-05-26
Accepted:2025-06-03
Online:2025-06-23
Published:2025-06-10
Contact:
Yan ZHAO
E-mail:zhaoyan19920504@163.com
CLC Number:
Junfu LI, Yan ZHAO, Wei WANG, Lu XIE, Hui ZHANG, Long WANG, Lin YUAN, Yuting TAN, Yu NING. Challenges and prospects for overall aerodynamic technology of next-generation supersonic passenger aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 532069.
Table 1
Parameters of some international supersonic passenger aircraft since 1990 s
| 年份 | 研究主体 | 项目 | 航程/km | 马赫数 | 乘客数 | 最大起飞质量/t | 过压/Pa | 地面声爆响度/PLdB |
|---|---|---|---|---|---|---|---|---|
| 1990s | 俄罗斯苏霍伊公司 | S-21 | 5 028 | 1.4 | 6~10 | 51.8 | ||
| 2003 | 美国湾流公司 | Gulfstream QSJ | 8 890 | 1.8 | 8~14 | 45.4 | 7.2 | |
| 2006 | 英国克兰菲尔德大学 | Cranfield E-5 | 10 556 | 1.8 | 6 | 45.5 | ||
| 2009 | 美国超声速航宇公司 | SAI QSST | 7 408 | 1.6 | 8~12 | 69.4 | 14.4 | |
| 2009 | 欧洲 | HISAC-A | 7 408 | 1.6 | 8 | 51.1 | 45.0 | |
| 2009 | 欧洲 | HISAC-B1 | 9 260 | 1.6 | 8 | 60.5 | 74.7 | |
| 2009 | 欧洲 | HISAC-C | 7 408 | 1.8 | 8 | 53.3 | 20.1 | |
| 2009 | 欧洲 | Hawker/ Raytheon | 9 260 | 1.8 | 6~8 | 54.1 | 19.2 | |
| 2010 | 波音 N+2 NRA | 7 408 | 1.6~1.8 | 35~70 | 85 | |||
| 2010 | 美国Aerion公司 | Aerion AS2 | 8 334 | 1.4 | 8~12 | 54.9 | ||
| 2010 | 美国斯坦福大学 | Uni. Stanford | 7 408 | 1.6 | 6~8 | 43.1 | 20.1 | |
| 2013 | 美国 | Spike S-512 | 7 408 | 1.6 | 12~18 | 52.2 | 70 | |
| 2013 | 日本JAXA | JAXA SSBJ-M | 6 482 | 1.6 | 10 | 36 | 46.0 | |
| 2016 | 美国NASA | NASA X-59 | 1.42 | 1 | 10.2 | 75 | ||
| 2016 | 博姆序曲 | 7 871 | 水面1.7陆上0.94 | 65~80 |
| [1] | SUMIT S, LUKE B. Boeing’s concorde competitor: The 2707-why was it canceled[EB/OL]. (2023-10-14)[2025-01-26]. . |
| [2] | FITZSIMMONS R D, ROENSCH R L. Advanced supersonic transport[C]∥SAE Technical Paper Series. Warrendale: SAE International, 1975, DOI: 10.4271/750617 . |
| [3] | CHRIS L. The Lockheed L-2000: The 250 seat supersonic passenger plane that never was[EB/OL]. (2021-03-05)[2025-01-26]. . |
| [4] | Bernard B, Dan S. Comcorde 50 years supersonic speed bird—the full story[M]. Lincolnshire: Mortons Media Group Ltd, 2018. |
| [5] | 高培仁. 民用飞机设计参考机种之一图-144超音速运输机[J]. 民用飞机设计与研究, 2015(3): 99-100. |
| GAO P R. Tu-144 supersonic transport[J]. Civil Aircraft Design & Research, 2015(3): 99-100 (in Chinese). | |
| [6] | WILHITE A W, SHAW R J. An overview of NASA’s high-speed research program[C]∥ ICAS 2000 Congress. Sorrento: ICAS, Sorrento: ICAS, 2000. |
| [7] | New Airplane Development. High-speed civil transport study[R]. Seattle: Boeing Commercial Airplanes, 1989. |
| [8] | GREEN P K, PACULL M, REIMERS H D. European 2nd generation supersonic commercial transport aircraft[C]∥Proceedings of the 20th International Congress of the Aeronautical Sciences. Sorrento: ICAS, 1996. |
| [9] | YAMAKAMI K, NAKAHASHI K, OBAYASHI S. Aerodynamic design and CFD evaluation of a high speed commercial transport: NAL SP-34[R]. Tokyo: National Aerospace Laboratory, 1997. |
| [10] | Gulfstream Aerospace Corporation. An overview of the gulfstream supersonic technology program[EB/OL]. (2009-03-01)[2025-01-26]. . |
| [11] | JOANNA B. LA to Tokyo in 5 hours: Inside the Spike S-512 supersonic jet[EB/OL]. (2021-03-05)[2025-01-26]. . |
| [12] | STEPHEN T. SAI resurrects QSST-X as all-first class supersonic airliner, seeks investors[EB/OL]. (2013-06-12)[2025-01-26]. . |
| [13] | FlyRadius. Aerion AS2 supersonic business jet[EB/OL]. (2021-03-18)[2025-01-26]. . |
| [14] | 邓双国, 额日其太. 日本开展超声速运输机研究[J]. 国际航空, 2010(6): 62-64. |
| DENG S G, ER R Q T. JAXA develops supersonic transport aircraft[J]. International Aviation, 2010(6): 62-64 (in Chinese). | |
| [15] | SAMANTHA M. NASA’s X-59 quiet supersonic jet looks ready to fly in new photos[EB/OL]. (2023-07-08)[2025-01-26]. . |
| [16] | KATE D. Boom technology’s supersonic test jet breaks sound barrier for first time[EB/OL]. (2025-01-28)[2025-01-28]. . |
| [17] | 余雄庆. 飞机总体多学科设计优化的现状与发展方向[J]. 南京航空航天大学学报, 2008, 40(4): 417-426. |
| YU X Q. Multidisciplinary design optimization for aircraft conceptual and preliminary design: status and directions[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4): 417-426 (in Chinese). | |
| [18] | WALSH J, TOWNSEND J, SALAS A, et al. Multidisciplinary high-fidelity analysis and optimization of aerospace vehicles. I-Formulation[C]∥38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. |
| [19] | WALSH J, WESTON R, SAMAREH J, et al. Multidisciplinary high-fidelity analysis and optimization of aerospace vehicles. Ⅱ-Preliminary results[C]∥38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. |
| [20] | KROO I, MANNING V. Collaborative optimization-status and directions[C]∥8th Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2000. |
| [21] | MACMILLIN P, GOLOVIDOV O, MASON W, et al. An MDO investigation of the impact of practical constraints on an HSCT configuration[C]∥35th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1997. |
| [22] | HOSDER S, WATSON L T, GROSSMAN B, et al. Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport[J]. Optimization and Engineering, 2001, 2(4): 431-452. |
| [23] | DELAURENTIS D A, MAVRIS D. Uncertainty modeling and management in multidisciplinary analysis and synthesis[C]∥38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. |
| [24] | FENWICK S, HARRIS J, DEAN S. Multi-disciplinary optimisation to assess the impact of cruise speed on HSCT performance[C]∥10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2004. |
| [25] | LABAN M, HERRMANN U. Multi-disciplinary analysis and optimisation applied to supersonic aircraft part 1: Analysis tools[C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
| [26] | SCHUERMANN M, GAFFURI M, HORST P. Multidisciplinary pre-design of supersonic aircraft[J]. CEAS Aeronautical Journal, 2015, 6(2): 207-216. |
| [27] | MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in 2030-35 (N+3)[C]∥28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010. |
| [28] | WELGE H R, BONET J, MAGEE T, et al. N+3 Advanced Concept Studies for Supersonic Commercial Transport Aircraft Entering Service in the 2030-2035 Period: NASA-CR 2011-217084[R]. Washington, D. C.: NASA, 2011. |
| [29] | CHOI S, ALONSO J J, KROO I M, et al. Multifidelity design optimization of low-boom supersonic jets[J]. Journal of Aircraft, 2008, 45(1): 106-118. |
| [30] | SUN Y C, SMITH H. Low-boom low-drag optimization in a multidisciplinary design analysis optimization environment[J]. Aerospace Science and Technology, 2019, 94: 105387. |
| [31] | LI W, GEISELHART K. Multidisciplinary design optimization of low-boom supersonic aircraft with mission constraints[J]. AIAA Journal, 2020, 59(1): 165-179. |
| [32] | LI W, GEISELHART K. Multi-objective, multidisciplinary optimization of low-boom supersonic transports using multifidelity models[J]. Journal of Aircraft, 2022, 59(5): 1137-1151. |
| [33] | LI W, GEISELHART K. Integration of low-fidelity MDO and CFD-based redesign of low-boom supersonic transports[J]. AIAA Journal, 2021, 59(10): 3923-3936. |
| [34] | 单程军, 贡天宇, 易理哲, 等. 超声速民机高效高可信度声爆/气动多学科优化方法[J]. 航空学报, 2024, 45(24): 51-68. |
| SHAN C J, GONG T Y, YI L Z, et al. High-efficiency and high-reliability sonic boom/aerodynamic multidisciplinary optimization method for supersonic civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 51-68 (in Chinese). | |
| [35] | HOWE D. Engine placement for sonic boom mitigation[C]∥40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
| [36] | UENO A, WATANABE Y. Propulsion/airframe integration considering low drag and low sonic boom[C]∥29th Congress of the International Council of the Aeronautical Sciences. Bonn: ICAS, 2014. |
| [37] | SLATER J W. Methodology for the design of streamline-traced external-compression supersonic inlets[C]∥50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2014. |
| [38] | OTTO S E, TREFNY C J, SLATER J W. Inward-turning streamline-traced inlet design method for low-boom, low-drag applications[J]. Journal of Propulsion and Power, 2016, 32(5): 1178-1189. |
| [39] | HEATH C M, SLATER J W, RALLABHANDI S K. Inlet trade study for a low-boom aircraft demonstrator[J]. Journal of Aircraft, 2016, 54(4): 1283-1293. |
| [40] | 李博, 梁德旺. 无隔道超声速进气道/前机身一体化计算与试验[J]. 航空学报, 2009, 30(9): 1597-1604. |
| LI B, LIANG D W. Numerical simulation and experiment of integral flow field of diverterless supersonic inlet/forebody[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1597-1604 (in Chinese). | |
| [41] | SCHARNHORST R. An overview of military aircraft supersonic inlet aerodynamics[C]∥50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
| [42] | 杨应凯. 枭龙飞机Bump进气道设计[J]. 南京航空航天大学学报, 2007, 39(4): 449-452. |
| YANG Y K. Design of bump inlet of thunder/JF-17 aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(4): 449-452 (in Chinese). | |
| [43] | 杨应凯. Bump进气道设计与试验研究[J]. 空气动力学学报, 2007, 25(3): 336-338, 350. |
| YANG Y K. The research of bump inlet design and test[J]. Acta Aerodynamica Sinica, 2007, 25(3): 336-338, 350 (in Chinese). | |
| [44] | CHANDLER F O, MONTES R. A CFD investigation of a diverterless supersonic inlet of ellipsoidal entrance shape[C]∥AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019. |
| [45] | 王娇, 谭慧俊, 黄河峡. Bump进气道中鼓包诱导的激波/边界层干扰特性[J]. 航空动力学报, 2018, 33(1): 97-107. |
| WANG J, TAN H J, HUANG H X. Shock wave/boundary layer interactions induced by bump in the Bump inlet[J]. Journal of Aerospace Power, 2018, 33(1): 97-107 (in Chinese). | |
| [46] | 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310. |
| DING Y L, HAN Z H, QIAO J L, et al. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626310 (in Chinese). | |
| [47] | SUN Y C, SMITH H. Review and prospect of supersonic business jet design[J]. Progress in Aerospace Sciences, 2017, 90: 12-38. |
| [48] | BRUCE W E, CARTER M B, ELMILIGUI A A, et al. Computational and experimental study of supersonic nozzle flow and aft-deck interactions[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
| [49] | 刘中臣, 钱战森, 李雪飞, 等. 发动机喷管羽流对近场声爆特性影响的风洞试验技术[J]. 航空学报, 2023, 44(2): 626952. |
| LIU Z C, QIAN Z S, LI X F, et al. Wind tunnel test techniques for exhaust nozzle plume effects on near-field sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626952 (in Chinese). | |
| [50] | 唐·N. 贾勒特. 座舱工程[M]. 孔渊, 曲卡尔, 译. 座舱工程[M]. 北京: 航空工业出版社, 2015. |
| JARRETT D N. Cockpit engineering[M]. KONG Y, QU K E, translate. Beijing: Aviation Industry Press, 2015 (in Chinese). | |
| [51] | CARTER P. Lindergh inspiration [J]. Plane and Pilot, 2012(8): 60-62. |
| [52] | HAN Z H, QIAO J L, ZHANG L W, et al. Recent progress of efficient low-boom design and optimization methods[J]. Progress in Aerospace Sciences, 2024, 146: 101007. |
| [53] | DING Y L, HAN Z H, QIAO J L, et al. Inverse design method for low-boom supersonic transport with lift constraint[J]. AIAA Journal, 2023, 61(7): 2840-2853. |
| [54] | KIRZ J. Surrogate based shape optimization of a low boom fuselage wing configuration[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
| [55] | PLOTKIN K, HAERING E, MURRAY J, et al. Ground data collection of shaped sonic boom experiment aircraft pressure signatures[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
| [56] | HONDA M, YOSHIDA K. D-SEND#2 flight demonstration for low sonic boom design technology[C]∥29th Congress of the International Council of the Aeronautical Sciences. Bonn: ICAS, 2014. |
| [57] | ORDAZ I, LI W. Using CFD surface solutions to shape sonic boom signatures propagated from off-body pressure[C]∥31st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2013. |
| [58] | JONES L B. Lower bounds for sonic bangs[J]. The Aeronautical Journal, 1961, 65(606): 433-436. |
| [59] | JONES L B. Lower bounds for sonic Bangs in the far field[J]. Aeronautical Quarterly, 1967, 18(1): 1-21. |
| [60] | JONES L B. Lower bounds for the pressure jump of the bow shock of a supersonic transport[J]. Aeronautical Quarterly, 1970, 21(1): 1-17. |
| [61] | GEORGE A R. Lower bounds for sonic booms in the midfield[J]. AIAA Journal, 1969, 7(8): 1542-1545. |
| [62] | SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature, 1969, 221(5181): 651-653. |
| [63] | SEEBASS R, GEORGE A R. Sonic-boom minimization[J]. The Journal of the Acoustical Society of America, 1972, 51(2C): 686-694. |
| [64] | DARDEN C M. Sonic-boom minimization with nose-bluntness relaxation: NASA TP-1348[R]. Washington, D. C.: NASA, 1979. |
| [65] | 韩忠华, 钱战森, 乔建领. 声爆预测与低声爆设计方法[M]. 北京: 科学出版社, 2022. |
| HAN Z H, QIAN Z S, QIAO J L. Sonic boom prediction and low-boom design methods[M]. Beijing: Science Press, 2022 (in Chinese). | |
| [66] | PLOTKIN K, RALLABHANDI S, LI W. Generalized formulation and extension of sonic boom minimization theory for front and aft shaping[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
| [67] | HAAS A, KROO I. A multi-shock inverse design method for low-boom supersonic aircraft[C]∥48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
| [68] | LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. Summary of recent NASA studies of human response to sonic booms[J]. Acoustical Society of America Journal, 2002, 111(1): 586-598. |
| [69] | PAWLOWSKI J, GRAHAM D, BOCCADORO C, et al. Origins and overview of the shaped sonic boom demonstration program[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
| [70] | PLOTKIN K, PAGE J, GRAHAM D, et al. Ground measurements of a shaped sonic boom[C]∥10th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2004. |
| [71] | Aftosmis M, Nemec M, Cliff S, Adjoint-based low-boom design with Cart3D[C]∥29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. |
| [72] | LI W, SHIELDS E, GEISELHART K. Mixed-fidelity approach for design of low-boom supersonic aircraft[J]. Journal of Aircraft, 2011, 48(4): 1131-1135. |
| [73] | LI W, SHIELDS E. Generation of parametric equivalent-area targets for design of low-boom supersonic concepts[C]∥49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
| [74] | 周铸, 黄江涛, 高正红, 等. 民用飞机气动外形数值优化设计面临的挑战与展望[J]. 航空学报, 2019, 40(1):522370. |
| ZHOU Z, HUANG J T, GAO Z H, et al. Challenges and prospects of numerical optimization design for large civil aircraft aerodynamic shape[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522370 (in Chinese). | |
| [75] | 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5): 121736. |
| QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121736 (in Chinese). | |
| [76] | NADARAJAH S K, JAMESON A, ALONSO J. An adjoint method for the calculation of remote sensitivities in supersonic flow[J]. International Journal of Computational Fluid Dynamics, 2006, 20(2): 61-74. |
| [77] | NADARAJAH S, JAMESON A, ALONSO J. Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow[C]∥9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2002. |
| [78] | RALLABHANDI S. Sonic boom adjoint methodology and its applications[C]∥29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. |
| [79] | RODRIGUEZ D L, AFTOSMIS M J, NEMEC M, et al. Adjoint-based minimization of X-59 sonic boom noise via control surfaces[C]∥AIAA Aviation 2021 Forum. Reston: AIAA, 2021. |
| [80] | RALLABHANDI S K, NIELSEN E J, DISKIN B. Sonic-boom mitigation through aircraft design and adjoint methodology[J]. Journal of Aircraft, 2014, 51(2): 502-510. |
| [81] | LUKACZYK T, PALACIOS F, ALONSO J. Response surface methodologies for low-boom supersonic aircraft design using equivalent area distributions[C]∥12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2012. |
| [82] | BAN N, YAMAZAKI W, KUSUNOSE K. Low-boom/low-drag design optimization of innovative supersonic transport configuration[J]. Journal of Aircraft, 2017, 55(3): 1071-1081. |
| [83] | KIRZ J. Surrogate-based low-boom low-drag nose design for the JAXA S4 supersonic airliner[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
| [84] | 乔建领. 超声速民机高可信度声爆预测与低声爆优化设计方法研究[D]. 西安: 西北工业大学, 2024. |
| QIAO J L. Research on high-fidelity sonic boom prediction and low-boom optimization design methods for supersonic civil aircraft[D]. Xi’an: Northwestern Polytechnical University, 2024 (in Chinese). | |
| [85] | 王迪, 冷岩, 杨龙, 等. 基于广义Burgers方程的声爆传播特性大气湍流影响[J]. 航空学报, 2023, 44(2): 626318. |
| WANG D, LENG Y, YANG L, et al. Atmospheric turbulence effects on sonic boom propagation based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626318 (in Chinese). | |
| [86] | 乔建领, 韩忠华, 丁玉临, 等. 分层大气湍流场对远场声爆传播的影响[J]. 航空学报, 2023, 44(2): 626350. |
| QIAO J L, HAN Z H, DING Y L, et al. Effects of stratified atmospheric turbulence on farfield sonic boom propagation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626350 (in Chinese). | |
| [87] | CHENG S I. Device for sonic boom reduction and improving aircraft performance: US3737119[P]. 1973-06-05. |
| [88] | BEAULIEU W, BROVKIN V, GOLDBERG I, et al. Microwave plasma influence on aerodynamic characteristics of body in airflow[C]∥Proceedings of the 2nd Weakly Ionized Gases Workshop. Reston: AIAA, 1998: 193-198. |
| [89] | EXTON R J, BALLA R J, SHIRINZADEH B, et al. On-board projection of a microwave plasma upstream of a Mach 6 bow shock[J]. Physics of Plasmas, 2001, 8(11): 5013-5017. |
| [90] | ZAIDI S, SHNEIDER M, MANSFIELD D, et al. Influence of upstream pulsed energy addition on shock-wave structure in supersonic flow[C]∥22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2002. |
| [91] | ZAIDI S H, SHNEIDER M N, MILES R B. Shock-wave mitigation through an off-body pulsed energy deposition[J]. AIAA Journal, 2004, 42(2): 326-331. |
| [92] | 冯晓强.超声速客机低声爆机理及设计方法研究[D]. 西安:西北工业大学, 2014. |
| FENG X Q. Research on the mechanism and design methods of low sonic boom for supersonic passenger aircraft[D]. Xi’an: Northwestern Polytechnical University, 2014 (in Chinese). | |
| [93] | 张力文, 韩忠华, 宋文萍. 一种基于吹吸气流动控制的超声速飞机声爆抑制方法: CN112550678A[P]. 2021-03-26. |
| ZHANG L W, HAN Z H, SONG W P. A sonic boom mitigation method for supersonic aircraft based on blowing and suction flow control CN 112550678A[P]. 2021-03-26 (in Chinese). | |
| [94] | YE L Q, YE Z Y, YE K, et al. A low-boom and low-drag design method for supersonic aircraft and its applications on airfoils[J]. Advances in Aerodynamics, 2021, 3(1): 25. |
| [95] | 贾苜梁, 陈树生, 曾品棚, 等. 基于逆向喷流控制的声爆主动抑制技术[C]∥第六届中国航空科学技术大会论文集. 北京: 北京航空航天大学出版社, 2023: 181-187. |
| JIA M L, CHEN S S, ZENG P P, et al. Active control technology for reducing sonic boom based on reverse jet flow control[C]∥Proceedings of the 6th China Aviation Science and Technology Conference. Beijing: Beijing University of Aeronautics and Astronautics Press, 2023: 181-187 (in Chinese). | |
| [96] | 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022, 43(12): 025649. |
| ZHANG L W, SONG W P, HAN Z H, et al. Recent progress of sonic boom generation, propagation, and mitigation mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 025649 (in Chinese). | |
| [97] | BATDORF S B. Alleviation of the sonic boom by thermal means[J]. Journal of Aircraft, 1972, 9(2): 150-156. |
| [98] | MARCONI F, BOWERSOX R D W, SCHETZ J A. Sonic boom alleviation using keel configurations[J]. Journal of Aircraft, 2003, 40(2): 363-369. |
| [99] | HENNE P A, HOWE D C, WOLZ R R, et al. Supersonic aircraft with spike for controlling and reducing sonic boom: US6698684[P]. 2004-03-02. |
| [100] | SIMMONS F, FREUND D. Morphing concept for quiet supersonic jet boom mitigation[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
| [101] | Smolka J, Cowert R, Molzahn L. Flight testing of the Gulfstream Quiet Spike™ on a NASA F-15B: NASA TD2007003280[R]. Washington, D. C.: NASA, 2007. |
| [102] | FREUND D, HOWE D, SIMMONS F III, et al. Quiet SpikeTM prototype aerodynamic characteristics from flight test[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
| [103] | HOWE D, SIMMONS F III, FREUND D. Development of the Gulfstream Quiet SpikeTM for sonic boom minimization[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
| [104] | HOWE D. Improved sonic boom minimization with extendable nose spike[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
| [105] | COWART R, GRINDLE T. An overview of the gulfstream/NASA quiet SpikeTM flight test program[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
| [106] | OZCER I, KANDIL O, YAGIZ B. Parametric study and effect of nose-piece attachment on sonic boom mitigation[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
| [107] | KANDIR O, OZCER I, ZHENG X D. Comparison of Full-Potential Propagation-Code Computations with the F-5E “Shaped Sonic Boom Experiment” Program[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
| [108] | OZCER I, KANDIL O. Design optimization of nose geometry of F-5E aircraft for sonic boom mitigation[C]∥ 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
| [109] | ZHANG L W, HAN Z H, QIAO J L, et. al . A rapid design method for quiet spike of supersonic transport aircraft[C]∥33rd Congress of the International Council of the Aeronautical Sciences. Bonn: ICAS, 2021. |
| [110] | LI Z T, CHEN S S, CHE S Q, et al. Investigations on sonic boom mitigation effect for supersonic transport based on quiet spike[M]∥2023 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2023) Proceedings. Singapore: Springer Nature Singapore, 2024: 457-472. |
| [111] | 张力文, 韩忠华, 宋文萍, 等. 一种针对超声速民机的广义静音锥气动布局构型: CN114435580A[P]. 2022-05-06. |
| ZHANG L W, HAN Z H, SONG W P, et al. A generalized silent cone aerodynamic configuration for supersonic civil aircraf: CN114435580At[P]. 2025-05-26 (in Chinese). | |
| [112] | FERRI A. Airplane configurations for low sonic boom: NASA SP-255[R]. Washington, D. C.: NASA, 1970. |
| [113] | DURSTON D A, WOLTER J D, SHEA P, et al. X-59 sonic boom test results from the NASA Glenn 8-by 6-foot supersonic wind tunnel[C]∥AIAA Aviation 2023 Forum. Reston: AIAA, 2023: 4317. |
| [114] | 范杰, 韩忠华, 乔建领, 等. 超声速民机机动飞行的聚焦声爆全场预测方法研究[J]. 宇航学报, 2024, 45(10): 1538-1551. |
| FAN J, HAN Z H, QIAO J L, et al. Method of full-field focused boom prediction for civil supersonic transport in maneuvers[J]. Journal of Astronautics, 2024, 45(10): 1538-1551 (in Chinese). | |
| [115] | 李军府, 陈晴, 王伟, 等. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613. |
| LI J F, CHEN Q, WANG W, et al. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613 (in Chinese). | |
| [116] | MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom: Six decades of research: NASA/SP-2014-622[R]. Washington, D. C.: NASA, 2014. |
| [117] | Perley R, et al. Design and demonstration of a system for routine, boomless supersonic flights[R]. Alexandria: National Technical Information Service, 1977. |
| [118] | SUN Y C, SMITH H. Design and operational assessment of a low-boom low-drag supersonic business jet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(1): 82-95. |
| [119] | Muñoz C V, Bonavolontà G, Lawson C, et al. Conceptual Design of a Next Generation Supersonic Airliner for Low Noise and Emissions[C]∥AIAA SciTech Forum. Reston: AIAA,2023. |
| [120] | VERMEERSCH O, YOSHIDA K, UEDA Y, et al. Natural laminar flow wing for supersonic conditions: Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79: 64-91. |
| [121] | THIBERT J J, ARNAL D. A review of ONERA aerodynamic research in support of a future supersonic transport aircraft[J]. Progress in Aerospace Sciences, 2000, 36(8): 581-627. |
| [122] | MASUDA K, YOSHIDA K. Improving the lift to drag characteristics of SST[C]∥Aircraft Design and Operations Meeting. Reston: AIAA, 1991. |
| [123] | 袁吉森, 孙爵, 李玲玉, 等. 超声速飞机层流布局设计与评估技术进展[J]. 航空学报, 2022, 43(11): 526316. |
| YUAN J S, SUN J, LI L Y, et al. Progress of supersonic aircraft laminar flow layout design and evaluation technologies[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526316 (in Chinese). | |
| [124] | ISHIKAWA H, UEDA Y, TOKUGAWA N. Natural laminar flow wing design for a low-boom supersonic aircraft[C]∥ 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017: 1860. |
| [125] | ISHIKAWA H, TOKUGAWA N, UEDA Y, et al. Natural laminar flow wing design of supersonic transport at high Reynolds number condition[C]∥29th Congress of the International Council of the Aeronautical Sciences. Bonn: ICAS, 2014. |
| [126] | STURDZA P. Extensive supersonic natural laminar flow on the aerion business jet[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
| [127] | GARZON A, MATISHECK J. Supersonic testing of natural laminar flow on sharp leading edge airfoils. recent experiments by aerion corporation[C]∥42nd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2012. |
| [128] | LYNDE M N, CAMPBELL R L. Expanding the natural laminar flow boundary for supersonic transports[C]∥ 34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016. |
| [129] | OWENS L R, BEELER G, KING R, et al. Supersonic crossflow transition control in ground and flight tests[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
| [130] | OWENS L R, BEELER G, KING R, et al. Supersonic traveling crossflow wave characteristics in ground and flight tests[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
| [131] | IULIANO E, QUAGLIARELLA D, DONELLI R S, et al. Design of a supersonic natural laminar flow wing-body[J]. Journal of Aircraft, 2011, 48(4): 1147-1162. |
| [132] | IULIANO E, DIN I S EL, DONELLI R, et al. Natural laminar flow design of a supersonic transport jet wing body[C]∥47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
| [133] | BUSHNELL D. Supersonic aircraft drag reduction[C]∥ 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston: AIAA, 1990. |
| [134] | MATSUSHIMA K, MARUYAMA D, KUSUNOSE K, et al. Extension of busemann biplane theory to three dimensional wing fuselage configurations[C]∥27th International Congress of the Aeronautical Science. Bonn: ICAS, 2010. |
| [135] | KUSUNOSE K, MATSUSHIMA K, MARUYAMA D. Supersonic biplane: A review[J]. Progress in Aerospace Sciences, 2011, 47(1): 53-87. |
| [136] | YAMAZAKI W, KUSUNOSE K. Biplane-wing/twin-body-fuselage configuration for innovative supersonic transport[J]. Journal of Aircraft, 2014, 51(6): 1942-1952. |
| [137] | 李占科, 张翔宇, 冯晓强, 等. 超声速双层翼翼型的阻力特性研究[J]. 应用力学学报, 2014, 31(4): 483-488, 1. |
| LI Z K, ZHANG X Y, FENG X Q, et al. The study on the drag characteristic of supersonic biplane[J]. Chinese Journal of Applied Mechanics, 2014, 31(4): 483-488, 1 (in Chinese). | |
| [138] | 朱宝柱, 武洁, 李伟杰, 等. Busemann双翼流动壅塞及减阻数值模拟[J]. 现代应用物理, 2014, 5(4): 303-309. |
| ZHU B Z, WU J, LI W J, et al. Numerical simulation of busemann biplane choked flow and drag reduction[J]. Modern Applied Physics, 2014, 5(4): 303-309 (in Chinese). | |
| [139] | ZHAI J, ZHANG C N, WANG F M, et al. Design of a new supersonic biplane[J]. Acta Astronautica, 2020, 175: 216-233. |
| [140] | 马博平. 超声速低阻低声爆气动布局研究[D]. 西安: 西北工业大学, 2020. |
| MA B P. Study of the supersonic low-drag low-boom aerodynamic concept[D]. Xi’an: Northwestern Polytechnical University, 2020 (in Chinese). | |
| [141] | SKLAR A, RUSAK Z. Busemann-Sears-haack hybrid geometries applied toward supersonic commercial vehicles for improved wave drag performance[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
| [142] | RAO H Y, SHI Y Y, BAI J Q, et al. Aerodynamic optimization design of supersonic wing based on discrete adjoint[J]. Aerospace, 2023, 10(5): 420. |
| [143] | GUAN X. Supersonic wing-body wave drag co-ordinated optimisation based on FCE methodology[J]. The Aeronautical Journal, 2014, 118(1209): 1359-1372. |
| [144] | Cheung S H, Edwards T A. Supersonic airplane design optimization method for aerodynamic performance and low sonic boom[R]. Reston: NASA Langley Research Center, 1992. |
| [145] | 李立, 白俊强, 郭同彪, 等. 基于伴随方法的超声速客机机翼气动优化设计[J]. 西北工业大学学报, 2017, 35(5): 843-849. |
| LI L, BAI J Q, GUO T B, et al. Aerodynamic optimization design of the supersonic aircraft based on discrete adjoint method[J]. Journal of Northwestern Polytechnical University, 2017, 35(5): 843-849 (in Chinese). | |
| [146] | MANGANO M, MARTINS J R R A. Multipoint aerodynamic shape optimization for subsonic and supersonic regimes[J]. Journal of Aircraft, 2021, 58(3): 650-662. |
| [147] | KIRZ J. Surrogate based shape optimization of a low boom axisymmetric body[C]∥2018 Applied Aerodynamics Conference. Reston: AIAA, 2018. |
| [148] | KIYICI F, ARADAG S. Design and optimization of a supersonic business jet[C]∥22nd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2015. |
| [149] | SERAJ S, MARTINS J R. Aerodynamic shape optimization of a supersonic transport considering low-speed stability[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
| [150] | BONS N, MARTINS J R R A, MADER C A, et al. High-fidelity aerostructural optimization studies of the aerion AS2 supersonic business jet[C]∥AIAA AVIATION 2020 Forum. Reston: AIAA, 2020. |
| [151] | 刘中臣, 钱战森, 冷岩. 声爆近场压力测量风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(4): 636-645. |
| LIU Z C, QIAN Z S, LENG Y. Review of recent progress of wind tunnel measurement techniques for off-body sonic boom pressure[J]. Acta Aerodynamica Sinica, 2019, 37(4): 636-645 (in Chinese). | |
| [152] | EDGE P M Jr, HUBBARD H H. Review of sonic-boom simulation devices and techniques[J]. The Journal of the Acoustical Society of America, 1972, 51(2C): 722-728. |
| [153] | MACK R J, KUHN N S. Determination of an extrapolation distance with pressure signatures measured at two to twenty span lengths from two low boom models: NASA TM-2006-214524[R]. Washington, D.C.: NASA, 2006. |
| [154] | FERRI A, WANG H. Observations on problems related to experimental determination of sonic boom: NASA SP-255[R]. Washington, D. C.: NASA, 1970. |
| [155] | CARLSON H W. An investigation of some aspects of the sonic boom by means of wind-tunnel measurements of pressures about several bodies of revolution at a Mach number of 2.01: NASA TND-161[R]. Washington, D. C.: NASA, 1959. |
| [156] | MAKINO Y, NOGUCHI M. Sonic-boom research activities on unmanned scaled supersonic experimental airplane[C]∥33rd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2003. |
| [157] | MORGENSTERN J. How to accurately measure low sonic boom or model surface pressure in supersonic wind tunnels[C]∥30th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2012. |
| [158] | MORGENSTERN J. Distortion correction of low sonic boom measurements in wind tunnels[C]∥30th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2012. |
| [159] | DURSTON D, CLIFF S, WAYMAN T, et al. Near field sonic boom test on two low-boom configurations using multiple measurement techniques at NASA Ames [C]∥29th AIAA Applied Aerodynamics Conference. Reston : AIAA, 2011. |
| [160] | CLIFF S, ELMILIGGUI A, AFTOSMIS M, et al .Design and evaluation of a pressure rail for sonic boom measurement in wind tunnels[C]∥7th International Conference on Computational Fluid Dynamics. Hawaii: ICCFD, 2012. |
| [161] | CARLSON H W, MORRIS O A. Wind-tunnel sonic-boom testing techniques[J]. Journal of Aircraft, 1967, 4(3): 245-249. |
| [162] | DURSTON D A, ELMILIGUI A A, CLIFF S E, et al. Experimental and computational sonic boom assessment of boeing N+2 low boom models[C]∥32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014. |
| [163] | 刘中臣, 钱战森, 冷岩, 等. 声爆近场空间压力风洞测量技术[J]. 航空学报, 2020, 41(4): 123596. |
| LIU Z C, QIAN Z S, LENG Y, et al. Wind tunnel measurement techniques for sonic boom near-field pressure[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 123596 (in Chinese). | |
| [164] | WILCOX F J, ELMILIGUI A, WAYMAN T R, et al. Experimental sonic boom measurements on a Mach 1.6 Cruise Low-Boom Configuration: NASA/TM-2012-217598[R]. Washington, D. C.: NASA, 2012. |
| [165] | 徐善劼. 基于概率模型的声爆试验数据分析[D]. 南京: 南京航空航天大学, 2022. |
| XU S J. Data analysis of sonic boom test based on probability model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022 (in Chinese). | |
| [166] | 杨洋, 钱丰学, 周波, 等. 暂冲式超声速风洞声爆试验平台建设进展[C]∥第六届中国航空科学技术大会论文集. 2023: 437-448. |
| YANG Y, QIAN F X, ZHOU B, et al. Progress in the construction of the impulse-type supersonic wind tunnel acoustic explosion test platform[C]∥Proceedings of the 6th China Aerospace Science and Technology Conference. 2023: 437-448 (in Chinese). | |
| [167] | 杨洋, 钱丰学, 张长丰, 等. 基于探针的声爆测量风洞试验技术研究[J]. 实验流体力学, 2023, 37(6): 92-100. |
| YANG Y, QIAN F X, ZHANG C F, et al. Research on wind tunnel test technology of sonic boom measurement based on probe[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 92-100 (in Chinese). | |
| [168] | LIU Z Y, QIAN F X, ZHANG Z, et al. Preliminary study on sonic boom measurement in wind tunnel based on PIV technique[C]∥Proceedings of the 6th China Aeronautical Science and Technology Conference. Singapore: Springer, 2024: 117-126. |
| [1] | Feng QU, Qing WANG, Shaowen CHENG, Kaiqiang WANG. Aerodynamic shape optimization design of airframe/propulsion integrated hypersonic aircraft with aerodynamics/trajectory/ control coupling [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(4): 130874-130874. |
| [2] | Ruixuan XIE, Ziyang ZHANG, Jinye LI, Han BAO, Fanghan LU, Qimin WANG, Dawei WU. Low-boom aerodynamic design and assessment of long-range supersonic passenger aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531589-531589. |
| [3] | Tianyu GONG, Chengjun SHAN, Lizhe YI, Yaosong LONG, Zhongtao CHENG. Impact of engine geometric parameters on sonic boom characteristics of supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531592-531592. |
| [4] | Yafei LI, Rui ZHAO. Optimization of supersonic passenger aircraft approach procedure based on noise and fuel consumption [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531919-531919. |
| [5] | Liwen ZHANG, Zhonghua HAN, Keshi ZHANG, Ke SONG, Wenping SONG. High-fidelity numerical simulation of near-/mid-field sonic boom propagation using a space-marching method for supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531935-531935. |
| [6] | Wei WANG, Junfu LI, Fengxue QIAN, Yuting TAN, Yan ZHAO, Bowen ZHAO, Qing CHEN, Ke SONG. Wind tunnel test of low sonic boom high efficiency layout for supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531941-531941. |
| [7] | Yutong WANG, Xiao LUO, Hongyang LIU, Chao SONG, Ying ZHAO, Zhu ZHOU. Sonic boom prediction of supersonic passenger aircraft based on multi-fidelity deep neural network [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531936-531936. |
| [8] | Zuotai LI, Shusheng CHEN, Shiyi JIN, Zhenghong GAO, Weiguo ZHOU. Optimization design and data mining for supersonic civil aircraft based on sonic boom efficient prediction [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531920-531920. |
| [9] | Qing CHEN, Zhonghua HAN, Keshi ZHANG, Jianling QIAO, Yulin DING, Wenping SONG. A full-carpet design optimization method for low-boom supersonic civil aircraft configuration [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531909-531909. |
| [10] | Junfu LI, Qing CHEN, Wei WANG, Zhonghua HAN, Yuting TAN, Yulin DING, Lu XIE, Jianling QIAO, Ke SONG, Junqiang AI. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613-629613. |
| [11] | Chengjun SHAN, Tianyu GONG, Lizhe YI, Haohui YANG, Yaosong LONG. High-efficiency and high-reliability sonic boom/aerodynamic multidisciplinary optimization method for supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630573-630573. |
| [12] | Di WANG, Yan LENG, Long YANG, Zhonghua HAN, Zhansen QIAN. Atmospheric turbulence effects on sonic boom propagation based on augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626318-626318. |
| [13] | Yiran GU, Jiangtao HUANG, Shusheng CHEN, Deyuan LIU, Zhenghong GAO. Sonic boom inversion technology based on inverse augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626258-626258). |
| [14] | Jianling QIAO, Zhonghua HAN, Yulin DING, Wenping SONG, Bifeng SONG. Effects of stratified atmospheric turbulence on farfield sonic boom propagation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626350-626350. |
| [15] | Shanjie XU, Hongqiang LYU, Zhongchen LIU, Yan LENG, Xuejun LIU. Data analysis of sonic boom test based on probability model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626269-626269. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

