Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (20): 531917.doi: 10.7527/S1000-6893.2025.31917
• Special Issue: Key Technologies for Supersonic Civil Aircraft • Previous Articles
Jiecheng DU1,2, Hanyue RAO1,2, Tihao YANG1,2(
), Junqiang AI3, Yifu CHEN1,2, Yayun SHI4,5, Junqiang BAI6,7
Received:2025-03-03
Revised:2025-04-01
Accepted:2025-04-29
Online:2025-05-20
Published:2025-05-19
Contact:
Tihao YANG
E-mail:yangtihao@nwpu.edu.cn
CLC Number:
Jiecheng DU, Hanyue RAO, Tihao YANG, Junqiang AI, Yifu CHEN, Yayun SHI, Junqiang BAI. Design space geometric filtering and manifold reconstruction-enhanced gradient optimization design method for laminar flow wing[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531917.
Table 1
Gradient verification of lift coefficients CL with respect to geometric design variables
| 设计变量 | 有限差分梯度求解 | 伴随方法梯度求解 | 相对误差 | 有限差分最优步长 |
|---|---|---|---|---|
| 1 | 1.276 958 65 | 1.276 399 84 | 4.4×10-4 | |
| 2 | 0.051 376 05 | 0.051 312 79 | 1.2×10-3 | |
| 3 | -1.684 265 89 | -1.680 759 95 | 2.1×10-3 | |
| 4 | 0.216 327 58 | 0.216 836 85 | 2.4×10-3 | |
| 5 | -1.182 558 32 | -1.182 324 15 | 2.0×10-4 | |
| 6 | -2.292 609 26 | -2.296 505 80 | 1.7×10-3 | |
| 7 | -0.138 632 92 | -0.138 272 93 | 2.6×10-3 | |
| 8 | 4.871 485 11 | 4.872 950 09 | 3.0×10-4 | |
| 9 | -1.749 228 06 | -1.747 886 82 | 7.7×10-4 | |
| 10 | 0.203 673 58 | 0.203 098 64 | 2.8×10-3 |
Table 2
Gradient verification of drag coefficients CD with respect to geometric design variables
| 设计变量 | 有限差分梯度求解 | 伴随方法梯度求解 | 相对误差 | 有限差分最优步长 |
|---|---|---|---|---|
| 1 | 0.003 166 59 | 0.003 169 59 | 9.5×10-4 | |
| 2 | -0.004 478 11 | -0.004 471 91 | 1.4×10-3 | |
| 3 | 0.001 094 61 | 0.001 085 04 | 8.7×10-3 | |
| 4 | -0.007 263 53 | -0.007 268 56 | 6.9×10-4 | |
| 5 | 0.002 299 12 | 0.002 298 48 | 2.8×10-4 | |
| 6 | -0.002 595 68 | -0.002 593 99 | 6.5×10-4 | |
| 7 | -0.003 835 43 | -0.003 831 68 | 9.8×10-4 | |
| 8 | 0.020 255 05 | 0.020 269 08 | 6.9×10-4 | |
| 9 | 0.003 883 85 | 0.003 888 47 | 1.2×10-3 | |
| 10 | -0.001 175 41 | -0.001 176 31 | 7.7×10-4 |
| [1] | 杨体浩, 白俊强, 段卓毅, 等. 喷气式客机层流翼气动设计综述[J]. 航空学报, 2022, 43(11): 527016. |
| YANG T H, BAI J Q, DUAN Z Y, et al. Aerodynamic design of laminar flow wings for jet aircraft: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 527016 (in Chinese). | |
| [2] | CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3): 783-795. |
| [3] | HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7): 2579-2593. |
| [4] | RASHAD R, ZINGG D W. Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach[J]. AIAA Journal, 2016, 54(11): 3321-3337. |
| [5] | SHI Y Y, MADER C A, HE S C, et al. Natural laminar-flow airfoil optimization design using a discrete adjoint approach[J]. AIAA Journal, 2020, 58(11): 4702-4722. |
| [6] | KENWAY G K W, MADER C A, HE P, et al. Effective adjoint approaches for computational fluid dynamics[J]. Progress in Aerospace Sciences, 2019, 110: 100542. |
| [7] | LYU Z J, XU Z L, MARTINS J. Benchmarking optimization algorithms for wing aerodynamic design optimization[C]∥Proceedings of the 8th International Conference on Computational Fluid Dynamics. Chengdu: Chinese Aerodynamics Research Society, 2014. |
| [8] | BONS N, HE X L, MADER C A, et al. Multimodality in aerodynamic wing design optimization[C]∥35th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2017. |
| [9] | YU Y, LYU Z J, XU Z L, et al. On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization[J]. Aerospace Science and Technology, 2018, 75: 183-199. |
| [10] | SILVA V, TENENBAUM J. Global versus local methods in nonlinear dimensionality reduction[C]∥Proceedings of the 6th Annual Conference on Nerual Information Processing Systems. Cambridge: MIT Press, 2003: 705-712. |
| [11] | FRANZ T. Reduced-order modeling for steady transonic flows via manifold learning[D]. Braunschweig: Technische Universität Braunschweig, 2016. |
| [12] | FRANZ T, ZIMMERMANN R, GÖRTZ S, et al. Interpolation-based reduced-order modelling for steady transonic flows via manifold learning[J]. International Journal of Computational Fluid Dynamics, 2014, 28(3-4): 106-121. |
| [13] | DECKER K, IYENGAR N, RAJARAM D, et al. Manifold alignment-based nonintrusive and nonlinear multifidelity reduced-order modeling[J]. AIAA Journal, 2022, 61(1): 454-474. |
| [14] | 邱亚松. 基于数据降维技术的气动外形设计方法[D]. 西安: 西北工业大学, 2014. |
| QIU Y S. Aerodynamic shape design methods based on data dimension reduction approaches[D]. Xi’an: Northwestern Polytechnical University, 2014 (in Chinese). | |
| [15] | 詹炜. 求解高维多目标优化问题的流形学习算法研究[D]. 武汉: 中国地质大学, 2013. |
| ZHAN W. Research on manifod learning algorithm for high-dimensional multi-objective optimization problems[D]. Wuhan: China University of Geosciences, 2013 (in Chinese). | |
| [16] | 宋超, 李伟斌, 周铸, 等. 基于流形结构重建的多目标气动优化算法[J]. 航空学报, 2020, 41(5): 623687. |
| SONG C, LI W B, ZHOU Z, et al. Multi-objective aerodynamic optimization algorithm based on manifold reconstruction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623687 (in Chinese). | |
| [17] | GREY Z J, DORONINA O A, GLAWS A. Separable shape tensors for aerodynamic designOpen Access[J]. Journal of Computational Design and Engineering, 2023, 10(1): 468-487. |
| [18] | PANG B, ZHANG Y, LI J L, et al. Data-driven surrogate model for aerodynamic design using separable shape tensor method[J]. Chinese Journal of Aeronautics, 2024, 37(9): 41-58. |
| [19] | BRYNER D, KLASSEN E, LE H L, et al. 2D affine and projective shape analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 998-1011. |
| [20] | LAMBE A B, MARTINS J R R A. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes[J]. Structural and Multidisciplinary Optimization, 2012, 46(2): 273-284. |
| [21] | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
| [22] | SOMERS D M. Design and experimental results for a flapped natural-laminar-flow airfoil for general aviation applications: NASA-TP-1865[R]. Washington DC: NASA, 1981. |
| [23] | MACK L M. Special course on stability and transition laminar flow: AGARD-R-709[R]. Pasadena: Advisory Group for Aerospace Research and Development, 1984. |
| [24] | YANG T H, CHEN Y F, SHI Y Y, et al. Stochastic investigation on the robustness of laminar-flow wings for flight tests[J]. AIAA Journal, 2022, 60(4): 2266-2286. |
| [25] | 杨体浩, 王一雯, 王雨桐, 等. 基于离散伴随的层流翼优化设计方法[J]. 航空学报, 2022, 43(12): 126132. |
| YANG T H, WANG Y W, WANG Y T, et al. Discrete adjoint-based optimization approach for laminar flow wings[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126132 (in Chinese). | |
| [26] | YANG T H, ZHONG H, CHEN Y F, et al. Transition prediction and sensitivity analysis for a natural laminar flow wing glove flight experiment[J]. Chinese Journal of Aeronautics, 2021, 34(8): 34-47. |
| [27] | 王一雯, 兰夏毓, 史亚云, 等. 考虑吸气影响的层流翼型梯度优化设计[J]. 航空学报, 2022, 43(11): 527323. |
| WANG Y W, LAN X Y, SHI Y Y, et al. Gradient optimization design for laminar airfoil considering inspiration effect[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 527323 (in Chinese). |
| [1] | Lin ZHOU, Jiangtao HUANG, Shidong ZHONG, Gang LIU, Jun DENG, Zhenghong GAO. Radar cross section optimization based on adjoint approach considering radar absorbing material [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 130347-130347. |
| [2] | Ke ZHAO, Jun DENG, Jiangtao HUANG, Shusheng CHEN, Zhenghong GAO. Aerodynamic optimization design of high and low speed integration for flying wing layout [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 129367-129367. |
| [3] | Yifu CHEN, Yuhang MA, Qingsheng LAN, Weiping SUN, Yayun SHI, Tihao YANG, Junqiang BAI. Uncertainty analysis and gradient optimization design of airfoil based on polynomial chaos expansion method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127446-127446. |
| [4] | Wenbo CAO, Yilang LIU, Weiwei ZHANG. Accelerated convergence method for fluid dynamics solvers based on reduced⁃order model and gradient optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127090-127090. |
| [5] | Xiaofeng WANG, Feng QU, Junjie FU, Zeyu WANG, Chaoyu LIU, Junqiang BAI. Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128352-128352. |
| [6] | LIANG Kuan, FU Lili, ZHANG Xiaopeng, LUO Yangjun. Topology optimization of structural dynamics based on material-field series-expansion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 226002-226002. |
| [7] | YANG Tihao, WANG Yiwen, WANG Yutong, SHI Yayun, ZHOU Zhu. Discrete adjoint-based optimization approach for laminar flow wings [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 126132-126132. |
| [8] | WANG Yiwen, LAN Xiayu, SHI Yayun, HUA Jun, BAI Junqiang, ZHOU Zhu. Gradient optimization design for laminar airfoil considering inspiration effect [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 527323-527323. |
| [9] | YAN Chongyang, ZHANG Yufei, CHEN Haixin. Application of field inversion based on discrete adjoint method in turbulence modeling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524695-524695. |
| [10] | ZHOU Lin, HUANG Jiangtao, GAO Zhenghong. Three dimensional radar cross section geometric sensitivity calculation based on discrete adjoint equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623361-623361. |
| [11] | LI Runze, ZHANG Yufei, CHEN Haixin. Strategies and methods for multi-objective aerodynamic optimization design for supercritical wings [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623409-623409. |
| [12] | LIU Fengbo, JIANG Cheng, MA Tuliang, LIANG Yihua. Aerodynamic optimization design of large civil aircraft using pressure distribution inverse design method based on discrete adjoint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623372-623372. |
| [13] | HUANG Jiangtao, ZHANG Yidian, GAO Zhenghong, YU Jing, ZHOU Zhu, YU Lei. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(5): 122505-122505. |
| [14] | HUANG Jiangtao, GAO Zhenghong, YU Jing, ZHENG Chuanyu, ZHOU Zhu. A typical integrated design method for aerodynamic shape optimization of large civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522369-522369. |
| [15] | LI Li, BAI Junqiang, GUO Tongbiao, CHEN Song. Aerodynamic optimization design for civil aircraft considering relaxed static stability [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(9): 121112-121112. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

