Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (20): 531915.doi: 10.7527/S1000-6893.2025.31915
• Special Issue: Key Technologies for Supersonic Civil Aircraft • Previous Articles
Zhenrong LIAO1,2, Junfu LI1,2,3, Bowen ZHAO1,2(
), Ming ZHANG1,2, Lu XIE1,2, Zhonghua HAN2,3, Mengqi AI1,2
Received:2025-03-03
Revised:2025-06-24
Accepted:2025-07-22
Online:2025-07-31
Published:2025-07-30
Contact:
Bowen ZHAO
E-mail:1844450113@qq.com
CLC Number:
Zhenrong LIAO, Junfu LI, Bowen ZHAO, Ming ZHANG, Lu XIE, Zhonghua HAN, Mengqi AI. Broad-speed-range wing design of supersonic civil aircraft based on engineering[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531915.
| [1] | 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310. |
| DING Y L, HAN Z H, QIAO J L, et al. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626310 (in Chinese). | |
| [2] | 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635. |
| HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: A review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4): 620-635 (in Chinese). | |
| [3] | CHUDOBA B, COLEMAN G, ROBERTS K, et al. What price supersonic speed?—A design anatomy of supersonic transportation-part 1[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Restona: AIAA, 2007. |
| [4] | PLOTKIN K, MAGLIERI D. Sonic boom research: history and future[C]∥33rd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2003. |
| [5] | SAKATA K. Supersonic Experimental Airplane (NEXST) for Next Generation SST Technology-Development and Flight Test Plan for the Unmanned Scaled Supersonic Glider[C]∥40th AIAA Aerospace Sciences Meeting & Exhibit. Restona: AIAA, 2002. |
| [6] | MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in 2030-35 (N+3)[C]∥28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010. |
| [7] | MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom six decades of research: NASA SP-622[R]. Washington, D. C.: NASA, 2014. |
| [8] | MICHAEL B. Conceptual design of a quiet supersonic technology airliner[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
| [9] | RICHWINE D, BRANDON J. Quiet superSonic technology (QueSST) aircraft preliminary design status and low-boom flight demonstration (LBFD) project update[C]∥AIAA SciTech Forum & Exposition (SciTech 2018). Reston: AIAA, 2018. |
| [10] | 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528. |
| ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528 (in Chinese). | |
| [11] | 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022, 43(12): 025649. |
| ZHANG L W, SONG W P, HAN Z H, et al. Recent progress of sonic boom generation, propagation, and mitigation mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 025649 (in Chinese). | |
| [12] | 李军府, 陈晴, 王伟, 等. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613. |
| LI J F, CHEN Q, WANG W, et al. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613 (in Chinese). | |
| [13] | IULIANO E, DIN I S EL, DONELLI R, et al. Natural laminar flow design of a supersonic transport jet wing body[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
| [14] | IULIANO E, QUAGLIARELLA D, DONELLI R S, et al. Design of a supersonic natural laminar flow wing-body[J]. Journal of Aircraft, 2011, 48(4): 1147-1162. |
| [15] | ISHIKAWA H, TOKUGAWA N, UEDA Y, et al. Natural laminar flow wing design of supersonic transport at high Reynolds number condition[C]∥Proceedings of International Congress of the Aeronautical Science. ICAS, 2014, 1(3): 2014. |
| [16] | ISHIKAWA H, UEDA Y, TOKUGAWA N. Natural laminar flow wing design for a low-boom supersonic aircraft[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
| [17] | UENO A, KANAMORI M, MAKINO Y. Multi-fidelity low-boom design based on near-field pressure signature[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
| [18] | LI W, SHIELDS E. Generation of parametric equivalent-area targets for design of low-boom supersonic concepts[C]∥49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
| [19] | UENO A, SUZUKI K. CFD-based shape optimization of hypersonic vehicles considering transonic aerodynamic performance[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
| [20] | UENO A, SUZUKI K. Two-dimensional shape optimization of hypersonic vehicles considering transonic aerodynamic performance[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2009, 52(176): 65-73. |
| [21] | 曹长强, 蔡晋生, 段焰辉. 超声速翼型气动优化设计[J]. 航空学报, 2015, 36(12): 3774-3784. |
| CAO C Q, CAI J S, DUAN Y H. Aerodynamic design optimization of supersonic airfoils[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3774-3784 (in Chinese). | |
| [22] | 刘传振, 刘强, 白鹏, 等. 涡波效应宽速域气动外形设计[J]. 航空学报, 2018, 39(7): 121824. |
| LIU C Z, LIU Q, BAI P, et al. Aerodynamic shape design integrating vortex and shock effects for width-velocity-range[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121824 (in Chinese). | |
| [23] | LIU F, HAN Z H, ZHANG Y, et al. Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance[J]. Aerospace Science and Technology, 2019, 93: 105345. |
| [24] | 孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报, 2018, 39(6): 121737. |
| SUN X C, HAN Z H, LIU F, et al. Design and analysis of hypersonic vehicle airfoil/wing at wide-range Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 121737 (in Chinese). | |
| [25] | 张阳, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型多目标优化设计研究[J]. 气体物理, 2019, 4(4): 26-40. |
| ZHANG Y, HAN Z H, LIU F, et al. Multi-objective aerodynamic shape optimization of wide-Mach-number-range airfoil[J]. Physics of Gases, 2019, 4(4): 26-40 (in Chinese). | |
| [26] | 张阳, 韩忠华, 周正, 等. 面向高超声速飞行器的宽速域翼型优化设计[J]. 空气动力学学报, 2021, 39(6): 111-127. |
| ZHANG Y, HAN Z H, ZHOU Z, et al. Aerodynamic design optimization of wide-Mach-number-range airfoils for hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2021, 39(6): 111-127 (in Chinese). | |
| [27] | ZHANG Y, HAN Z H, LIU F, et al. Aerodynamic design optimization of hypersonic wing over wide Mach-number range considering lift matching[C]∥32nd Congress of the International Council of the Aeronautic Sciences. ICAS, 2020, 476: 2021. |
| [28] | DARDEN C M. Sonic-boom minimization with nose bluntness relaxation: NASA TP-1348[R]. Washington, D.C.: NASA, 1979. |
| [29] | JONES L B. Lower bounds for the pressure jump of the bow shock of a supersonic transport[J]. Aeronautical Quarterly, 1970, 21(1): 1-17. |
| [30] | SEEBASS R, GEORGE A R. Sonic-boom minimization[J]. The Journal of the Acoustical Society of America, 1972, 51(2C): 686-694. |
| [31] | WHITCOMB R T. A study of the zero-lift drag-rise characteristics of wing-body combinations near the speed of sound: NACA-TR-1273[R]. Washington, D.C.: NASA, 1956. |
| [32] | BAIZE D G. 1995 NASA high-speed research program sonic boom workshop Volume II-Configuration design, analysis, and testing: NASA/CP-1999-209520/VOL2[R]. Washington, D.C.: NASA,1999 |
| [33] | ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2): 250-258. |
| [34] | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
| [35] | ROBINSON L D. A numerical model for sonic boom propagation through an inhomogeneous, windy atmoshpere: NASA CP-1372[R]. Washington, D.C.: NASA,1992. |
| [1] | Chao YANG, Yuting TAN, Wei WANG, Yan ZHAO, Xiongqing YU. Multidisciplinary optimization with low-boom design for supersonic civil aircraft conceptual design [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531457-531457. |
| [2] | Kefeng ZHENG, Wenping SONG, Han NIE, Yulin DING, Jianling QIAO, Qing CHEN, Yiheng WANG, Ke SONG, Keshi ZHANG. Natural laminar flow wing design method for supersonic civil aircraft considering full-aircraft sonic-boom characteristics [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531214-531214. |
| [3] | Linxuan YANG, Huicai MA, Liping PANG. Design and performance simulation of environmental control system for supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531585-531585. |
| [4] | Tianyu GONG, Chengjun SHAN, Lizhe YI, Yaosong LONG, Zhongtao CHENG. Impact of engine geometric parameters on sonic boom characteristics of supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531592-531592. |
| [5] | Qing CHEN, Zhonghua HAN, Keshi ZHANG, Jianling QIAO, Yulin DING, Wenping SONG. A full-carpet design optimization method for low-boom supersonic civil aircraft configuration [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531909-531909. |
| [6] | Xuehe WANG, Chunshuo CHAI, Shilong XING, Feng FAN, Shuilin HUANG. Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529960-529960. |
| [7] | Junfu LI, Qing CHEN, Wei WANG, Zhonghua HAN, Yuting TAN, Yulin DING, Lu XIE, Jianling QIAO, Ke SONG, Junqiang AI. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613-629613. |
| [8] | Chengjun SHAN, Tianyu GONG, Lizhe YI, Haohui YANG, Yaosong LONG. High-efficiency and high-reliability sonic boom/aerodynamic multidisciplinary optimization method for supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630573-630573. |
| [9] | Di WANG, Yan LENG, Long YANG, Zhonghua HAN, Zhansen QIAN. Atmospheric turbulence effects on sonic boom propagation based on augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626318-626318. |
| [10] | Jun SHU, Dongguang XU, Zhirong HAN, Si LI, Xiong HUANG. Hybrid wing design of icing wind tunnel supercooled large droplet icing test [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 627182-627182. |
| [11] | ZHANG Liwen, SONG Wenping, HAN Zhonghua, QIAN Zhansen, SONG Bifeng. Recent progress of sonic boom generation, propagation, and mitigation mechanism [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 25649-025649. |
| [12] | YUAN Jisen, SUN Jue, LI Lingyu, YU Shenghao, NIE Han, GAO Liangjie, HAN Zhonghua, QIAN Zhansen. Progress of supersonic aircraft laminar flow layout design and evaluation technologies [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526316-526316. |
| [13] | WANG Di, QIAN Zhansen, LENG Yan. High-order scheme discretization of sonic boom propagation model based on augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 124916-124916. |
| [14] | YANG Jun, CHANG Nan, GAN Xuedong, GAN Jian, LIU Jian. Engineering design and analysis technique of aeroelastic characteristics of composite wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523477-523477. |
| [15] | CHEN Bo, MIAO Tao, MA Shuai, GENG Jianzhong, JIANG Xiong. Methods for improving pitching moment characteristics of a propeller airplane [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(4): 622341-622341. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

