| [1] |
刘传洋, 吴一全, 刘景景. 无人机航拍图像中绝缘子缺陷检测的深度学习方法研究进展[J]. 电工技术学报, 2025, 40(9): 2897-2916.
|
|
LIU C Y, WU Y Q, LIU J J. Research progress of deep learning methods for insulator defect detection in UAV based aerial images[J]. Transactions of China Electrotechnical Society, 2025, 40(9): 2897-2916 (in Chinese).
|
| [2] |
罗旭东, 吴一全, 陈金林. 无人机航拍影像目标检测与语义分割的深度学习方法研究进展[J]. 航空学报, 2024, 45(6): 028822.
|
|
LUO X D, WU Y Q, CHEN J L. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 028822 (in Chinese).
|
| [3] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[M]∥Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
|
| [4] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2999-3007.
|
| [5] |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 7464-7475.
|
| [6] |
陈奎, 贾立娇, 刘晓, 等. 基于多尺度特征融合的绝缘子缺陷程度检测[J]. 高电压技术, 2024, 50(5): 1889-1899.
|
|
CHEN K, JIA L J, LIU X, et al. Insulator defect degree detection based on multi-scale feature fusion[J]. High Voltage Engineering, 2024, 50(5): 1889-1899 (in Chinese).
|
| [7] |
王韵琳, 冯天波, 孙宁, 等. 融合注意力与多尺度特征的电力绝缘子缺陷检测方法[J]. 高电压技术, 2024, 50(5): 1933-1942.
|
|
WANG Y L, FENG T B, SUN N, et al. Defect detection method for power insulators based on attention and multi-scale context information[J]. High Voltage Engineering, 2024, 50(5): 1933-1942 (in Chinese).
|
| [8] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
| [9] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
|
| [10] |
李鑫, 刘帅男, 杨桢, 等. 基于改进Cascade R-CNN的输电线路多目标检测[J]. 电子测量与仪器学报, 2021, 35(10): 24-32.
|
|
LI X, LIU S N, YANG Z, et al. Multi-target detection of transmission lines based on improved cascade R-CNN[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(10): 24-32 (in Chinese).
|
| [11] |
MA J Q, SHAO W Y, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11): 3111-3122.
|
| [12] |
赵其昌, 吴一全, 苑玉彬. 光学遥感图像舰船目标检测与识别方法研究进展[J]. 航空学报, 2024, 45(8): 029025.
|
|
ZHAO Q C, WU Y Q, YUAN Y B. Progress of ship detection and recognition methods in optical remote sensing images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 029025 (in Chinese).
|
| [13] |
DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 2849-2858.
|
| [14] |
XIE X, CHENG G, WANG J, et al. Oriented R-CNN for object detection[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 3520-3529.
|
| [15] |
YANG X, YAN J, FENG Z, et al. R 3 D e t : Refined single-stage detector with feature refinement for rotating object[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4), 3163-3171.
|
| [16] |
奉志强, 谢志军, 包正伟, 等. 基于改进YOLOv5的无人机实时密集小目标检测算法[J]. 航空学报, 2023, 44(7): 327106.
|
|
FENG Z Q, XIE Z J, BAO Z W, et al. Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 327106 (in Chinese).
|
| [17] |
QURESHI M F, MUSHTAQ Z, REHMAN M Z U, et al. E2CNN: An efficient concatenated CNN for classification of surface EMG extracted from upper limb[J]. IEEE Sensors Journal, 2023, 23(8): 8989-8996.
|
| [18] |
HAN J, DING J, XUE N, et al. ReDet: A rotation-equivariant detector for aerial object detection[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 2786-2795.
|
| [19] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[M]∥Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
|
| [20] |
QIAO S Y, CHEN L C, YUILLE A. DetectoRS: Detecting objects with recursive feature pyramid and switchable atrous convolution[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 10208-10219.
|
| [21] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 936-944.
|
| [22] |
RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[DB/OL]. arXiv preprint: 1710.05941, 2017.
|
| [23] |
GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]∥Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS). Fort Lauderdale: JMLR Workshop and Conference Proceedings, 2011: 315-323.
|
| [24] |
YANG X, ZHOU Y, ZHANG G F, et al. The KFIoU loss for rotated object detection[DB/OL]. arXiv preprint: 2201.12558, 2022.
|
| [25] |
YANG X, YANG X J, YANG J R, et al. Learning high-precision bounding box for rotated object detection via Kullback-Leibler divergence[DB/OL]. arXiv preprint: 2106.01883, 2021.
|
| [26] |
TAO X, ZHANG D P, WANG Z H, et al. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1486-1498.
|
| [27] |
VIEIRA E SILVA A L B, DE CASTRO FELIX H, SIMÕES F P M, et al. InsPLAD: A dataset and benchmark for power line asset inspection in UAV images[J]. International Journal of Remote Sensing, 2023, 44(23): 7294-7320.
|
| [28] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 618-626.
|
| [29] |
ZHANG J Q, LEI J, XIE W Y, et al. SuperYOLO: Super resolution assisted object detection in multimodal remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5605415.
|
| [30] |
LI Y X, HOU Q B, ZHENG Z H, et al. Large selective kernel network for remote sensing object detection[C]∥2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2023: 16748-16759.
|
| [31] |
WANG G, CHEN Y F, AN P, et al. UAV-YOLOv8: A small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190.
|