Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (18): 131735.doi: 10.7527/S1000-6893.2025.31735
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Shanyue GUAN1, Zhengyu TIAN1(
), Wenjia XIE1, Qianyue FU1, Yuhang CHU1, Jiajun ZHU2
Received:2024-12-30
Revised:2025-02-24
Accepted:2025-03-24
Online:2025-09-25
Published:2025-03-28
Contact:
Zhengyu TIAN
E-mail:tianzhengyu_kd@163.com
Supported by:CLC Number:
Shanyue GUAN, Zhengyu TIAN, Wenjia XIE, Qianyue FU, Yuhang CHU, Jiajun ZHU. Analysis of plasma chemical reactions of hypersonic reentry blunt in flight corridor[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 131735.
Table 1
Eigenvalues and eigenvector analysis of matrix FnΤFn for formaldehyde oxidation at t=1×10-5 s
| 序号 | 特征值 | 特征值偏差/% | 绝对值较大的特征矢量分量(≥0.1) | 特征矢量分量偏差/% | ||
|---|---|---|---|---|---|---|
| 本文 | 文献[ | 本文 | 文献[ | |||
| 1 | 1.756 0×104 | 1.750×104 | 0.343 | -0.730,0.681 | -0.73,0.68 | 0.074 |
| 2 | 3.667 0×103 | 3.650×103 | 0.466 | -0.715,0.699 | -0.72,0.70 | 0.419 |
| 3 | 14.770 0 | 14.700 | 0.476 | 0.800,-0.597 | 0.80,-0.60 | 0.250 |
| 4 | 11.780 0 | 11.700 | 0.684 | 0.909,-0.368,-0.167 | 0.91,-0.37,-0.17 | 0.805 |
| 5 | 2.037 0 | 2.040 | -0.147 | 0.800,0.599 | 0.80,0.60 | 0.083 |
| 6 | 1.002 0 | 1.000 | 0.200 | 0.999 | 1.00 | 0.100 |
| 7 | 0.936 5 | 0.937 | -0.053 | -0.704,-0.664,-0.230 | -0.71,-0.66,-0.23 | 0.483 |
| 8 | 0.872 4 | 0.872 | 0.046 | -0.901,-0.349,0.194,0.153 | -0.90,-0.35,0.19,0.15 | 1.126 |
| 9 | 4.141 0×10-4 | 4.100×10-4 | 1.000 | 0.981,0.178 | 0.98,0.18 | 0.607 |
| [1] | ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. 2nd ed. Washington: AIAA, 2006. |
| [2] | 李小平, 刘彦明, 谢楷, 等. 高速飞行器等离子体鞘套电磁波传播理论与通信技术[M]. 北京: 科学出版社, 2018. |
| LI X P, LIU Y M, XIE K. Electromagnetic wave propagation theory and communication technology of plasma sheath of high-speed aircraft[M]. Beijing: Science Press, 2018 (in Chinese). | |
| [3] | ZHANG W Q, ZHANG Z J, WANG X W, et al. A review of the mathematical modeling of equilibrium and nonequilibrium hypersonic flows[J]. Advances in Aerodynamics, 2022, 4(1): 798-844. |
| [4] | ZHAO W, YANG X L, WANG J Y, et al. Evaluation of thermodynamic and chemical kinetic models for hypersonic and high-temperature flow simulation[J]. Applied Sciences, 2023, 13(17): 9991. |
| [5] | DUNN M G, KANG S. Theoretical and experimental studies of reentry plasmas: NASA-CR-2232[R]. Washington: NASA, 1973. |
| [6] | GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-PR-1232[R]. Washington: NASA, 1990. |
| [7] | PARK C. On convergence of computation of chemically reacting flows[C]∥23rd Aerospace Sciences Meeting. Reno: AIAA, 1985. |
| [8] | PARK C. Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen[J]. Journal of Thermophysics and Heat Transfer, 1988, 2(1): 8-16. |
| [9] | PARK C. A review of reaction rates in high temperature air[C]∥24th Thermophysics Conference. Buffalo: AIAA, 1989. |
| [10] | PARK C. Review of chemical-kinetic problems of future NASA missions: I-Earth entries[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(3): 385-398. |
| [11] | PARK C, JAFFE R L, PARTRIDGE H. Chemical-kinetic parameters of hyperbolic earth entry[J]. Journal of Thermophysics and Heat Transfer, 2001, 15(1): 76-90. |
| [12] | BLOTTNER F G. Viscous shock layer at the stagnation point with nonequilibrium air chemistry[J]. AIAA Journal, 1969, 7(12): 2281-2288. |
| [13] | KIM J G, JO S M. Modification of chemical-kinetic parameters for 11-air species in re-entry flows[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120950. |
| [14] | WANG X Y, YAN C, ZHENG Y K, et al. Assessment of chemical kinetic models on hypersonic flow heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 111: 356-366. |
| [15] | HAO J A, WANG J Y, LEE C. Numerical study of hypersonic flows over reentry configurations with different chemical nonequilibrium models[J]. Acta Astronautica, 2016, 126: 1-10. |
| [16] | NIU Q L, YUAN Z C, DONG S K, et al. Assessment of nonequilibrium air-chemistry models on species formation in hypersonic shock layer[J]. International Journal of Heat and Mass Transfer, 2018, 127: 703-716. |
| [17] | 赵法明. 高超声速空气化学非平衡流与燃气喷流混合反应流场数值模拟研究[D]. 南京: 南京航空航天大学, 2019. |
| ZHAO F M. A numerical investigation for the mixed reacting flowfield of the air chemical nonequilibrium flow and gaseous jet flow[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
| [18] | 李俊红, 吕俊明, 苗文博, 等. 真实气体效应对等离子体鞘套及电磁参数的影响[J]. 航空动力学报, 2022, 37(8): 1579-1586. |
| LI J H, LÜ J M, MIAO W B, et al. Real gas effects on the plasma sheath and the electromagnetic parameters of the reentry vehicle[J]. Journal of Aerospace Power, 2022, 37(8): 1579-1586 (in Chinese). | |
| [19] | 欧阳水吾, 谢中强. 高温非平衡空气绕流[M]. 北京: 国防工业出版社, 2001. |
| OUYANG S W, XIE Z Q. High temperature nonequilibrium air flow[M]. Beijing: National Defense Industry Press, 2001 (in Chinese). | |
| [20] | SLOTNICK J P, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences: NF1676L-18332[R]. Hampton: NASA, 2014. |
| [21] | 陈坚强, 袁先旭, 涂国华, 等. 计算流体力学2035愿景[M]. 北京: 科学出版社, 2023. |
| CHEN J Q, YUAN X X, TU G H, et al. Computational fluid dynamics 2035 vision in China[M]. Beijing: Science Press, 2023 (in Chinese). | |
| [22] | TURÁNYI T. Sensitivity analysis of complex kinetic systems: Tools and applications[J]. Journal of Mathematical Chemistry, 1990, 5(3): 203-248. |
| [23] | RADHAKRISHNAN K. Combustion kinetics and sensitivity analysis computations[M]∥Numerical Approaches to Combustion Modeling. Reston: AIAA, 1991: 83-128. |
| [24] | 苟小龙, 孙文廷, 陈正. 燃烧数值模拟中的复杂化学反应机理处理方法[J]. 中国科学: 物理学 力学 天文学, 2017, 47(7): 62-78. |
| GOU X L, SUN W T, CHEN Z. Numerical methods for complicated chemical mechanism involved in combustion simulation[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(7): 62-78 (in Chinese). | |
| [25] | CALELLO S C, LU T, ZHAO X. An analytical sensitivity analysis method for turbulent reacting flows[C]∥AIAA SciTech 2022 Forum. Reston: AIAA, 2022. |
| [26] | 吴悠, 杨明, 杨斌. 航空煤油反应动力学模型的发展现状和挑战[J]. 清华大学学报(自然科学版), 2023, 63(4): 521-545. |
| WU Y, YANG M, YANG B. Recent progress and challenges in combustion kinetic model of jet fuel[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(4): 521-545 (in Chinese). | |
| [27] | LIU C C, LIN K L, WANG Y R, et al. Multi-fidelity neural network for uncertainty quantification of chemical reaction models[J]. Combustion and Flame, 2023, 258: 113074. |
| [28] | 钱炜祺. 用灵敏度法简化化学反应动力模型[J]. 空气动力学学报, 2004, 22(1): 88-92. |
| QIAN W Q. Using sensitivity method to reduce the chemical reaction kinetics model[J]. Acta Aerodynamica Sinica, 2004, 22(1): 88-92 (in Chinese). | |
| [29] | VAJDA S, VALKO P, TURÁNYI T. Principal component analysis of kinetic models[J]. International Journal of Chemical Kinetics, 1985, 17(1): 55-81. |
| [30] | TURÁNYI T, BÉRCES T, VAJDA S. Reaction rate analysis of complex kinetic systems[J]. International Journal of Chemical Kinetics, 1989, 21(2): 83-99. |
| [31] | JONES W L, CROSS A E. Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second: L-7984[R]. Hampton: NASA, 1972. |
| [32] | GRANTHAM W L. Flight results of a 25000-foot-per-second reentry experiment using microwave reflectometers to measure plasma electron density and standoff distance: NASA TN D-6062[R]. Hampton: NASA, 1970. |
| [33] | BIRD R B, STEWART W E, LIGHTFOOT E N. Transport phenomena[M]. 2nd ed. New York: John Wiley & Sons, Inc., 2006. |
| [34] | SVEHLA R A. Estimated viscosities and thermal conductivities of gases at high temperatures: NASA-TR-R-132[R]. Cleveland: NASA, 1962. |
| [35] | 郝佳傲, 王京盈, 高振勋, 等. 高速高温流场电子能非平衡的数值模拟[J]. 航空学报, 2016, 37(11): 3340-3350. |
| HAO J A, WANG J Y, GAO Z X, et al. Numerical simulation of electronic-electron energy nonequilibrium in high speed and high temperature flowfields[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3340-3350 (in Chinese). | |
| [36] | 王长青. 空天飞行技术创新与发展展望[J]. 宇航学报, 2021, 42(7): 807-819. |
| WANG C Q. Technological innovation and development prospect of aerospace vehicle[J]. Journal of Astronautics, 2021, 42(7): 807-819 (in Chinese). | |
| [37] | TANK M H. National aero-space plane (NASP) program[R]. Washington: Department of Defense, 1991. |
| [38] | 艾邦成, 陈思员, 陈智, 等. 关于高超声速飞行器新热障的认知与探讨[J]. 气体物理, 2023, 8(4): 1-17. |
| AI B C, CHEN S Y, CHEN Z, et al. Cognition and discussion on new thermal barrier of hypersonic vehicles[J]. Physics of Gases, 2023, 8(4): 1-17 (in Chinese). |
| [1] | Guoliang RONG, Yifan YANG, Chuangchuang LI, Zhiyuan LI, Xueliang LI, Jiaquan ZHAO, Jie WU. Integrated design of homogeneous mixing and heating of flow based on dual-throat Ludwieg tube wind tunnel settling chamber [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 130906-130906. |
| [2] | Zhouwei FAN, Chuihuan KONG, Ming LIU, Zhaoguang TAN. Sensitivity analysis on key parameters of hybrid hydrogen fuel cell commercial aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 631066-631066. |
| [3] | Jianyu XU, Li ZHOU, Zhanxue WANG, Jie SHI, Hao SHI. Calculation method for hypersonic plume infrared radiation based on a fast line-by-line calculation model [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 630778-630778. |
| [4] | Feiteng LUO, Zhenming QU, Haitao LI, Xinke LI, Dahao YAO, Wenjuan CHEN, Yaosong LONG, Baoxi WEI, Yanjin MAN, Fujiang YANG, Qiang CHENG, Wubin KONG. Research progress and key issues of inlet pre-injection at hypersonic condition [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631189-631189. |
| [5] | Lixiang WEI, Jinglei XU, Kuangshi CHEN, Shuai HUANG, Jianhui GE, Guangtao SONG. Scheme design and performance study of adjustable vector nozzle for wide-range hypersonic aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631086-631086. |
| [6] | Xiaogang ZHENG, Zhancang HU, Zejun CAI, Chongguang SHI, Chengxiang ZHU, Yancheng YOU. Design of 3D inward-turning inlet considering cruising angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631233-631233. |
| [7] | Xiaogang ZHENG, Chongguang SHI, Jiale ZHANG, Mi ZHANG, Wenlei ZHU, Chengxiang ZHU, Yancheng YOU. Research progress review on hypersonic three-dimensional inward-turning inlet [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631245-631245. |
| [8] | Zonglin JIANG, Guilai HAN, Yunpeng WANG, Yunfeng LIU, Chaokai YUAN, Changtong LUO, Chun WANG, Zongmin HU, Meikuan LIU. Theoretical bases and key technologies of JF-22 hypervelocity wind tunnel [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531130-531130. |
| [9] | Feng QU, Qing WANG, Shaowen CHENG, Kaiqiang WANG. Aerodynamic shape optimization design of airframe/propulsion integrated hypersonic aircraft with aerodynamics/trajectory/ control coupling [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(4): 130874-130874. |
| [10] | Jun CHEN, Feng QU, Junjie FU. Design method of hypersonic inward turning inlet based on genetic and gradient hybrid optimization strategy [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 130808-130808. |
| [11] | Kai YANG, Mengfei ZHANG, Chongguang SHI, Yaokun YU, Xiaogang ZHENG, Chengxiang ZHU, Yancheng YOU. Method of three-dimensional curved stream-surface and its application in external waverider [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 130492-130492. |
| [12] | Xueliang LI, Chuangchuang LI, Yahan ZHANG, Wei SU, Jie WU. Effect of distributed ablation pattern on hypersonic boundary-layer instability with a flat plate [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 130464-130464. |
| [13] | Yousheng WANG, Liguo SUN, Jinpeng WEI, Wenqian TAN, Yonghao PAN. Optimization of climb trajectory of combined-cycle engine powered aircraft based on improved CSO-Gauss pseudospectral method [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 230737-230737. |
| [14] | Yicheng QIU, Chaokai YUAN, Guilai HAN. Numerical simulation methods for aircraft exposed to lightning strikes [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 131899-131899. |
| [15] | Honglin LIU, Guan WANG, Shuaibin AN, Shaojie MA, Kai LIU. Online identification based strong adaptive control of hypersonic morphing vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(17): 331654-331654. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

