Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (18): 131752.doi: 10.7527/S1000-6893.2025.31752
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Chaolong LI1(
), Zhixun XIA2, Lei BAO1, Xianzhong GAO1, Zhengtao GUO1, Guobin ZHANG1, Likun MA2, Zhenbing LUO2, Shuai SHAO1, Xiangyue HE1
Received:2025-01-02
Revised:2025-01-27
Accepted:2025-05-06
Online:2025-09-25
Published:2025-05-13
Contact:
Chaolong LI
E-mail:lichaolong13@nudt.edu.cn
Supported by:CLC Number:
Chaolong LI, Zhixun XIA, Lei BAO, Xianzhong GAO, Zhengtao GUO, Guobin ZHANG, Likun MA, Zhenbing LUO, Shuai SHAO, Xiangyue HE. Research progress on combustion organization technology of scramjet fueled by solid propellant[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 131752.
| [1] | FERRI A. Review of scramjet propulsion technology[J]. Journal of Aircraft, 1968, 5(1): 3-10. |
| [2] | CURRAN E T. Scramjet engines: The first forty years[J]. Journal of Propulsion and Power, 2001, 17(6): 1138-1148. |
| [3] | WALTRUP P J, WHITE M E, ZARLINGO F, et al. History of U.S. navy ramjet, scramjet, and mixed-cycle propulsion development[J]. Journal of Propulsion and Power, 2002, 18(1): 14-27. |
| [4] | ZHAO X, XIA Z X, MA L K, et al. Research progress on solid-fueled scramjet[J]. Chinese Journal of Aeronautics, 2022, 35(1): 398-415. |
| [5] | LUO S B, FENG Y B, SONG J W, et al. Progress and challenges in exploration of powder fueled ramjets[J]. Applied Thermal Engineering, 2022, 213: 118776. |
| [6] | 王宁飞, 王俊龙, 武毅. 固体燃料超燃冲压发动机研究概况[J]. 上海航天, 2019, 36(6): 35-43. |
| WANG N F, WANG J L, WU Y. Overview of solid fuel scramjet engine research[J]. Aerospace Shanghai, 2019, 36(6): 35-43 (in Chinese). | |
| [7] | 蔡强, 赵晓宁, 杨玉新, 等. 吸气式巡航飞行器对固体超燃冲压发动机应用需求分析[J]. 导弹与航天运载技术, 2020(3): 43-48. |
| CAI Q, ZHAO X N, YANG Y X, et al. Analysis of the application requirements of solid-fuel scramjet for air-breathing cruise vehicle[J]. Missiles and Space Vehicles, 2020(3): 43-48 (in Chinese). | |
| [8] | 赵庆华, 刘建全, 王莉莉, 等. 固体燃料的超声速燃烧研究进展[J]. 飞航导弹, 2009(10): 59-63. |
| ZHAO Q H, LIU J Q, WANG L L, et al. Research progress of supersonic combustion of solid fuels[J]. Winged Missiles Journal, 2009(10): 59-63 (in Chinese). | |
| [9] | 王宁飞, 刘昶秀, 魏志军. 固体燃料超燃冲压发动机燃速研究进展[J]. 航空动力学报, 2014, 29(3): 727-736. |
| WANG N F, LIU C X, WEI Z J. Review of research on solid fuel regression rate of scramjet combustion[J]. Journal of Aerospace Power, 2014, 29(3): 727-736 (in Chinese). | |
| [10] | 吕仲, 夏智勋, 刘冰, 等. 采用固体燃料的超燃冲压发动机研究进展[J]. 航空动力学报, 2016, 31(8): 1973-1984. |
| LÜ Z, XIA Z X, LIU B, et al. Review of research on solid fuel scramjet engine[J]. Journal of Aerospace Power, 2016, 31(8): 1973-1984 (in Chinese). | |
| [11] | 夏智勋, 马立坤, 冯运超, 等. 固体火箭超燃冲压发动机技术[M]. 北京: 科学出版社, 2021:13-15. |
| XIA Z X, MA L K, FENG Y C, et al. Solid rocket scramjet technology[M]. Beijing: Science Press, 2021: 13-15 (in Chinese). | |
| [12] | WITT M. Investigation into the feasibility of using solid fuel ramjets for high supersonic/low hypersonic tactical missiles[D]. Monterey: Naval Postgraduate School, 1989. |
| [13] | ANGUS W. An investigation into the performance characteristics of a solid fuel scramjet propulsion device[D]. Monterey: Naval Postgraduate School, 1991. |
| [14] | BEN-YAKAR A, GANY A. Experimental study of a solid fuel scramjet[C]∥30th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1994. |
| [15] | BEN-YAKAR A, NATAN B, GANY A. Investigation of a solid fuel scramjet combustor[J]. Journal of Propulsion and Power, 1998, 14(4): 447-455. |
| [16] | FELDMAN I, GANY A. Parametric investigation of supersonic combustion of solid fuels[J]. International Journal of Energetic Materials and Chemical Propulsion, 2002, 5(1-6): 366-374. |
| [17] | COHEN-ZUR A, NATAN B. Experimental investigation of a supersonic combustion solid fuel ramjet[J]. Journal of Propulsion and Power, 1998, 14(6): 880-889. |
| [18] | PEI X Y, WU Z W, WEI Z J, et al. Numerical investigation on cavity length for solid fuel scramjet[C]∥48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012. |
| [19] | PEI X Y, WU Z W, WEI Z J, et al. Numerical investigation on internal regressing shapes of solid-fuel scramjet combustor[J]. Journal of Propulsion and Power, 2013, 29(5): 1041-1051. |
| [20] | TAO H, WEI Z J. Numerical investigation on the effects of cavity in solid fuel scramjet[C]∥49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2013. |
| [21] | 陶欢, 魏志军, 迟鸿伟, 等. 固体燃料凹腔结构对超声速流动的影响[J]. 固体火箭技术, 2014, 37(3): 307-314. |
| TAO H, WEI Z J, CHI H W, et al. Effects of cavity on solid fuel scramjet combustor characteristics under supersonic cross flow[J]. Journal of Solid Rocket Technology, 2014, 37(3): 307-314 (in Chinese). | |
| [22] | PEI X Y, HOU L Y. Numerical investigation on cavity structure of solid-fuel scramjet combustor[J]. Acta Astronautica, 2014, 105(2): 463-475. |
| [23] | 陶欢, 魏志军, 迟鸿伟, 等. 等直段直径对固体燃料超燃冲压发动机燃烧室性能的影响[J]. 推进技术, 2015, 36(6): 884-892. |
| TAO H, WEI Z J, CHI H W, et al. Effects of diameter of cylindrical section on flowfield characteristics of solid fuel scramjet combustor[J]. Journal of Propulsion Technology, 2015, 36(6): 884-892 (in Chinese). | |
| [24] | 陶欢, 魏志军, 迟鸿伟, 等. 燃烧室长度对固体燃料超燃冲压发动机燃烧室性能的影响[J]. 航空动力学报, 2016, 31(3): 598-607. |
| TAO H, WEI Z J, CHI H W, et al. Effects of combustor length on solid fuel scramjet combustor performance[J]. Journal of Aerospace Power, 2016, 31(3): 598-607 (in Chinese). | |
| [25] | LI B, WEI Z J, CHI H W. Numerical analysis of solid fuel scramjet operating at Mach 4 to 6[C]∥49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2013. |
| [26] | 李彪, 魏志军, 迟鸿伟, 等. 不同来流条件下固体燃料超燃冲压发动机性能评估[J]. 固体火箭技术, 2014, 37(4): 469-474. |
| LI B, WEI Z J, CHI H W, et al. Performance evaluation of solid fuel scramjet under different inflow conditions[J]. Journal of Solid Rocket Technology, 2014, 37(4): 469-474 (in Chinese). | |
| [27] | 李彪, 迟鸿伟, 王利和, 等. 固体燃料超燃冲压发动机燃烧室初步实验研究[J]. 推进技术, 2016, 37(4): 726-732. |
| LI B, CHI H W, WANG L H, et al. Preliminary experimental investigation of solid fuel scramjet combustor[J]. Journal of Propulsion Technology, 2016, 37(4): 726-732 (in Chinese). | |
| [28] | 李彪, 魏志军, 迟鸿伟, 等. 进气道内压缩比对固体燃料超燃冲压发动机性能的影响[J]. 航空动力学报, 2016, 31(2): 459-466. |
| LI B, WEI Z J, CHI H W, et al. Effect of inlet internal contraction ratio on performance of solid fuel scramjet[J]. Journal of Aerospace Power, 2016, 31(2): 459-466 (in Chinese). | |
| [29] | 王利和, 武志文, 迟鸿伟, 等. 固体燃料超燃冲压发动机燃烧室流场准一维计算方法研究[J]. 固体火箭技术, 2013, 36(6): 742-747. |
| WANG L H, WU Z W, CHI H W, et al. A method of quasi-one dimensional numerical analysis for solid fuel scramjet combustor performance[J]. Journal of Solid Rocket Technology, 2013, 36(6): 742-747 (in Chinese). | |
| [30] | 王利和, 武志文, 迟鸿伟, 等. 不同台阶高度下固体燃料超燃冲压发动机燃烧室初始型面变化规律[J]. 推进技术, 2013, 34(11): 1493-1498. |
| WANG L H, WU Z W, CHI H W, et al. Initial profile variation rule of solid fuel scramjet combustor with different step height[J]. Journal of Propulsion Technology, 2013, 34(11): 1493-1498 (in Chinese). | |
| [31] | WANG L H, CHI H W, LIU C X, et al. Numerical and Experimental study on the Solid Fuel Scramjet Combustor with a cavity flame holder[C]∥50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2014. |
| [32] | WANG L H, WU Z W, CHI H W, et al. Numerical and experimental study on the solid-fuel scramjet combustor[J]. Journal of Propulsion and Power, 2015, 31(2): 685-693. |
| [33] | 王利和, 武志文, 刘昶秀, 等. 入口气流参数对固体燃料超燃冲压发动机燃烧室性能的影响分析[J]. 兵工学报, 2014, 35(5): 691-696. |
| WANG L H, WU Z W, LIU C X, et al. The effect of entrance airflow parameters on solid fuel scramjet combustor performance[J]. Acta Armamentarii, 2014, 35(5): 691-696 (in Chinese). | |
| [34] | WANG L H, LI S P, CHI H W, et al. Quasi-one-dimensional numerical method for solid fuel scramjet combustor analysis and design[J]. Journal of Aerospace Engineering, 2015, 28(3): 04014083. |
| [35] | 迟鸿伟, 魏志军, 李彪, 等. 台阶和凹腔在固体燃料超燃冲压发动机内自点火性能对比[J]. 固体火箭技术, 2014, 37(5): 628-633, 639. |
| CHI H W, WEI Z J, LI B, et al. Difference of self-ignition performance in solid fuel scramjet with step or cavity[J]. Journal of Solid Rocket Technology, 2014, 37(5): 628-633, 639 (in Chinese). | |
| [36] | 迟鸿伟, 魏志军, 王利和, 等. 固体燃料超燃冲压发动机燃烧室中PMMA自点火性能数值研究[J]. 推进技术, 2014, 35(6): 799-808. |
| CHI H W, WEI Z J, WANG L H, et al. Numerical investigation on self-ignition of PMMA in solid fuel scramjet[J]. Journal of Propulsion Technology, 2014, 35(6): 799-808 (in Chinese). | |
| [37] | CHI H W, WEI Z J, WANG L H, et al. Numerical investigation of self-ignition characteristics of solid-fuel scramjet combustor[J]. Journal of Propulsion and Power, 2015, 31(4): 1019-1032. |
| [38] | 迟鸿伟, 魏志军, 王利和, 等. 固体燃料超燃冲压发动机燃烧室中火焰稳定性数值研究[J]. 推进技术, 2015, 36(10): 1495-1503. |
| CHI H W, WEI Z J, WANG L H, et al. Numerical investigation of combustion flammability characteristics in solid fuel scramjet combustor[J]. Journal of Propulsion Technology, 2015, 36(10): 1495-1503 (in Chinese). | |
| [39] | 迟鸿伟, 魏志军, 李彪, 等. 燃烧室构型对固体燃料超燃冲压发动机自点火的影响[J]. 航空动力学报, 2016, 31(8): 1985-1994. |
| CHI H W, WEI Z J, LI B, et al. Influence of combustor shape on self-ignition in solid fuel scramjet[J]. Journal of Aerospace Power, 2016, 31(8): 1985-1994 (in Chinese). | |
| [40] | FANG G L, WEI Z J, WU Z W, et al. Experimental study on a long-time working solid-fuel scramjet combustor[J]. Science and Technology of Energetic Materials, 2019, 80(2):31-40. |
| [41] | LAPICQUE F, LÉDÉ J, VILLERMAUX J. Design and optimization of a reactor for high temperature dissociation of water and carbon dioxide using solar energy[J]. Chemical Engineering Science, 1986, 41(4): 677-684. |
| [42] | LANGMUIR I. The dissociation of water vapor and carbon dioxide at high temperatures[J]. Journal of the American Chemical Society, 1906, 28(10): 1357-1379. |
| [43] | PIETANZA L D, COLONNA G, CAPITELLI M. Kinetics versus thermodynamics on CO2 dissociation in high temperature microwave discharges[J]. Plasma Sources Science and Technology, 2020, 29(3): 035022. |
| [44] | 吕仲. 固体火箭超燃冲压发动机工作特性研究[D]. 长沙: 国防科技大学, 2012. |
| LV Z. Study on working characteristics of solid rocket scramjet[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). | |
| [45] | LV Z, XIA Z X, LIU B, et al. Experimental and numerical investigation of a solid-fuel rocket scramjet combustor[J]. Journal of Propulsion and Power, 2016, 32(2): 273-278. |
| [46] | LV Z, XIA Z X, LIU B, et al. Preliminary experimental study on solid-fuel rocket scramjet combustor[J]. Journal of Zhejiang University: Science A, 2017, 18(2): 106-112. |
| [47] | 吕仲. 固体火箭超燃冲压发动机工作特性研究[D]. 长沙: 国防科技大学, 2012. |
| LV Z. Study on working characteristics of solid rocket scramjet[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). | |
| [48] | 刘仔, 陈林泉, 吴秋, 等. 固体火箭超燃冲压发动机补燃室构型的影响分析[J]. 固体火箭技术, 2017, 40(4): 432-436. |
| LIU Z, CHEN L Q, WU Q, et al. Configuration effects analysis of the second combustor of the solid rocket scramjet[J]. Journal of Solid Rocket Technology, 2017, 40(4): 432-436 (in Chinese). | |
| [49] | 刘仔, 陈林泉, 吴秋. 固体火箭超燃冲压发动机燃烧特性分析[J]. 弹箭与制导学报, 2017, 37(4):84-87. |
| LIU Z, CHEN L Q, WU Q, et al. Analysis of combustion characteristics of solid rocket scramjet [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2017, 37(4):84-87 (in Chinese). | |
| [50] | 刘仔, 陈林泉, 褚佑彪, 等. 燃气喷射方式对固体火箭超燃冲压发动机性能的影响[J]. 固体火箭技术, 2018, 41(6): 710-714. |
| LIU Z, CHEN L Q, CHU Y B, et al. Effect of gas injection way on the solid-rocket scramjet performance[J]. Journal of Solid Rocket Technology, 2018, 41(6): 710-714 (in Chinese). | |
| [51] | 刘仔, 李叙华, 王立武, 等. 喷孔结构对头部进气固体火箭超燃冲压发动机燃烧性能的影响[J]. 弹箭与制导学报, 2022, 42(4): 47-50, 56. |
| LIU Z, LI X H, WANG L W, et al. Effect of the nozzle structure on combustion performance of nose fuel-inlet model solid-fuel rocket scramjet[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(4): 47-50, 56 (in Chinese). | |
| [52] | 刘仔, 陈林泉, 吴秋. 空燃比对固体火箭超燃冲压发动机性能的影响[J]. 弹箭与制导学报, 2017, 37(6): 93-95, 101. |
| LIU Z, CHEN L Q, WU Q. Effects of air-fuel ratio on the solid-rocket scramjet performance[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2017, 37(6): 93-95, 101 (in Chinese). | |
| [53] | 刘仔, 李叙华, 王立武, 等. 飞行高度对头部进气固体火箭超燃冲压发动机燃烧性能的影响[J]. 弹箭与制导学报, 2022, 42(5): 98-101. |
| LIU Z, LI X H, WANG L W, et al. Effect of flight altitude on combustion performance of nose fuel-inlet model solid-fuel rocket scramjet[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(5): 98-101 (in Chinese). | |
| [54] | LIU Y, GAO Y G, SHI L, et al. Preliminary experimental study on solid rocket fuel gas scramjet[J]. Acta Astronautica, 2018, 153: 146-153. |
| [55] | 刘洋, 高勇刚, 余晓京, 等. 固体火箭燃气超燃冲压发动机概念分析(Ⅰ): 全流道一体化设计[J]. 固体火箭技术, 2018, 41(4): 403-413. |
| LIU Y, GAO Y G, YU X J, et al. Analysis of the conceptual solid rocket fuel gas scramjet engine(Ⅰ): Integrated design of the full flow path[J]. Journal of Solid Rocket Technology, 2018, 41(4): 403-413 (in Chinese). | |
| [56] | 高勇刚, 刘洋, 余晓京, 等. 固体火箭燃气超燃冲压发动机燃烧组织技术研究[J]. 推进技术, 2019, 40(1): 140-150. |
| GAO Y G, LIU Y, YU X J, et al. Research on combustion organization technology of the solid rocket fuel gas scramjet[J]. Journal of Propulsion Technology, 2019, 40(1): 140-150 (in Chinese). | |
| [57] | 朱韶华, 梁磊, 秦飞, 等. 固体火箭超燃冲压发动机燃烧性能影响因素研究[J]. 推进技术, 2021, 42(3): 638-646. |
| ZHU S H, LIANG L, QIN F, et al. Influence factors of combustion performance of solid rocket scramjet engine[J]. Journal of Propulsion Technology, 2021, 42(3): 638-646 (in Chinese). | |
| [58] | LIU Y, GAO Y G, CHAI Z X, et al. Mixing and heat release characteristics in the combustor of solid-fuel rocket scramjet based on DES[J]. Aerospace Science and Technology, 2019, 94: 105391. |
| [59] | LIU Y, MA D, FU B S, et al. Direct numerical simulation of fine flow structures of subsonic-supersonic mixing layer[J]. Aerospace Science and Technology, 2019, 95: 105431. |
| [60] | GAO Y G, LIU Y, CHAI Z X, et al. Influence of lobe geometry on mixing and heat release characteristics of solid fuel rocket scramjet combustor[J]. Acta Astronautica, 2019, 164: 212-229. |
| [61] | 刘洋, 吴紫薇, 高勇刚, 等. 扰流楔块的参数变化对于固体火箭超燃冲压发动机性能的影响[C]∥第六届空天动力联合会议, 2022: 444-460. |
| LIU Y, WU Z W, GAO Y G, et al. Influence of parameter variation of turbulence wedge on performance of solid rocket scramjet[C]∥6th Joint Conference on Aerospace Dynamics, 2022: 444-460 (in Chinese). | |
| [62] | LI C L, ZHAO X, XIA Z X, et al. Influence of the vortex generator on the performance of solid rocket scramjet combustor[J]. Acta Astronautica, 2019, 164: 174-183. |
| [63] | LI C L, XIA Z X, MA L K, et al. Experimental and numerical study of solid rocket scramjet combustor equipped with combined cavity and strut device[J]. Acta Astronautica, 2019, 162: 145-154. |
| [64] | LI C L, XIA Z X, MA L K, et al. Numerical study on the solid fuel rocket scramjet combustor with cavity[J]. Energies, 2019, 12(7): 1235. |
| [65] | LI C L, XIA Z X, MA L K, et al. Performance evaluation for scramjet based on ground direct-connected test: A method investigation[J]. Aerospace Science and Technology, 2021, 117: 106895. |
| [66] | 李潮隆, 夏智勋, 马立坤, 等. 固体火箭超燃冲压发动机性能试验[J]. 航空学报, 2022, 43(12): 126075. |
| LI C L, XIA Z X, MA L K, et al. Experiment on performance of solid rocket scramjet[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126075 (in Chinese). | |
| [67] | 李潮隆, 夏智勋, 马立坤, 等. 带凹腔的固体火箭超燃冲压发动机燃烧室数值研究[C]∥中国航天第三专业信息网第40届技术交流会会议, 2019: 1-9. |
| LI C L, XIA Z X, MA L K, et al. Numerical study on combustion chamber of solid rocket scramjet with cavity[C]∥The 40th APTIS Technical Conference, 2019: 1-9 (in Chinese). | |
| [68] | 马立坤, 李潮隆, 夏智勋, 等. 带凹腔火焰稳定器的固体火箭超燃冲压发动机燃烧室试验研究[J]. 推进技术, 2021, 42(2): 319-326. |
| MA L K, LI C L, XIA Z X, et al. Experimental investigation of solid rocket scramjet combustor with cavity flameholder[J]. Journal of Propulsion Technology, 2021, 42(2): 319-326 (in Chinese). | |
| [69] | LI C L, XIA Z X, MA L K, et al. Experimental investigation on the ignition delay of fuel-rich mixture in solid rocket scramjet[J]. Acta Astronautica, 2022, 190: 112-117. |
| [70] | 凌江, 徐义华, 孙海俊, 等. 凹腔对含硼固体火箭超燃冲压燃烧特性的影响[J]. 兵工学报, 2022, 43(5): 1054-1062. |
| LING J, XU Y H, SUN H J, et al. Effect of cavity on scramjet combustion characteristics of boron-containing solid rocket[J]. Acta Armamentarii, 2022, 43(5): 1054-1062 (in Chinese). | |
| [71] | LIU J, WANG N F, WANG J, et al. Optimizing combustion performance in a solid rocket scramjet engine[J]. Aerospace Science and Technology, 2020, 99: 105560. |
| [72] | 黄礼铿, 胡广军, 胡豹, 等. 固体火箭超燃冲压发动机燃烧试验研究[J]. 固体火箭技术, 2020, 43(5): 549-553. |
| HUANG L K, HU G J, HU B, et al. Experiment on combustion of solid rocket scramjet[J]. Journal of Solid Rocket Technology, 2020, 43(5): 549-553 (in Chinese). | |
| [73] | 杨鹏年. 基于凹腔的固体超燃冲压发动机燃烧增强技术研究[D]. 长沙: 国防科技大学, 2021. |
| YANG P N. Study on combustion enhancement technology of solid scramjet based on cavity[D]. Changsha: National University of Defense Technology, 2021 (in Chinese). | |
| [74] | 杨鹏年, 夏智勋, 陈斌斌, 等. 凹腔对固体超燃冲压发动机燃烧性能影响研究[J]. 推进技术, 2023, 44(4): 106-118. |
| YANG P N, XIA Z X, CHEN B B, et al. Effects of cavity on solid scramjet combustion performance[J]. Journal of Propulsion Technology, 2023, 44(4): 106-118 (in Chinese). | |
| [75] | YANG P N, XIA Z X, MA L K, et al. Influence of the multicavity shape on the solid scramjet[J]. International Journal of Aerospace Engineering, 2021, 2021(1): 9718537. |
| [76] | YANG P N, XIA Z X, MA L K, et al. Direct-connect test of solid scramjet with symmetrical structure[J]. Energies, 2021, 14(17): 5589. |
| [77] | YANG P N, XIA Z X, MA L K, et al. Experimental study on the influence of the injection structure on solid scramjet performance[J]. Acta Astronautica, 2021, 188: 229-238. |
| [78] | LI C L, CAI W G, XIA Z X, et al. Combustion enhancement of boron-containing fuel-rich mixture by steam reforming in a supersonic flow[J]. Combustion and Flame, 2024, 263: 113418. |
| [79] | LI C L, XIA Z X, MA L K, et al. Theoretical analysis on applying steam reforming to the primary combustion of the boron-based fuel-rich propellant[J]. Fuel, 2024, 361: 130671. |
| [80] | SALGANSKY E A, LUTSENKO N A, LEVIN V A, et al. Modeling of solid fuel gasification in combined charge of low-temperature gas generator for high-speed ramjet engine[J]. Aerospace Science and Technology, 2019, 84: 31-36. |
| [81] | MILLER W, BURKES W, MCCLENDON S. Design approaches for variable flow ducted rockets[C]∥17th Joint Propulsion Conference. Reston: AIAA, 1981. |
| [82] | WANG A, ZENG Q H. Load characteristics and modeling methods for the flow regulator of a solid ducted rocket[J]. International Journal of Aerospace Engineering, 2019, 2019(1): 8031290. |
| [83] | WANG A, ZENG Q H, MA L K, et al. Adaptive backlash compensation method based on touch state observation for a solid ducted rocket[J]. International Journal of Aerospace Engineering, 2020, 2020(1): 6698158. |
| [84] | WANG A, ZENG Q H, MA L K, et al. Virtual free-volume revised method and adaptive control for solid ducted rockets[J]. Journal of Aerospace Engineering, 2021, 34(5): 04021053. |
| [85] | DUGGER G L. Recent advances in ramjet combustion[J]. ARS Journal, 1959, 29(11): 819-827. |
| [86] | XU Y H, JIA R, MEDINA H, et al. Effect of tangential swirl air inlet angle on the combustion efficiency of a hybrid powder-solid ramjet[J]. Acta Astronautica, 2019, 159: 87-95. |
| [87] | LI C, HU C B, XIN X, et al. Experimental study on the operation characteristics of aluminum powder fueled ramjet[J]. Acta Astronautica, 2016, 129: 74-81. |
| [88] | 申慧君, 夏智勋, 胡建新, 等. 金属粉末燃料冲压发动机初步试验研究[J]. 固体火箭技术, 2008, 31(3): 225-227, 231. |
| SHEN H J, XIA Z X, HU J X, et al. Preliminary experimental investigation on metal-powder fuel ramjet[J]. Journal of Solid Rocket Technology, 2008, 31(3): 225-227, 231 (in Chinese). | |
| [89] | 胡凡, 张为华, 夏智勋, 等. 金属燃料/水冲压发动机一次进水试验[J]. 航空动力学报, 2008, 23(10): 1949-1952. |
| HU F, ZHANG W H, XIA Z X, et al. Experimental investigation on once injecting water in metal fuel/water ramjet[J]. Journal of Aerospace Power, 2008, 23(10): 1949-1952 (in Chinese). | |
| [90] | 申慧君, 夏智勋, 胡建新, 等. 粉末燃料冲压发动机理论性能分析[J]. 推进技术, 2007, 28(2): 181-185. |
| SHEN H J, XIA Z X, HU J X, et al. Theoretical performance analysis of the powdered fuel ramjet[J]. Journal of Propulsion Technology, 2007, 28(2): 181-185 (in Chinese). | |
| [91] | 胡春波, 李超, 孙海俊, 等. 粉末燃料冲压发动机研究进展[J]. 固体火箭技术, 2017, 40(3): 269-276. |
| HU C B, LI C, SUN H J, et al. A summary of powder-fueled ramjet[J]. Journal of Solid Rocket Technology, 2017, 40(3): 269-276 (in Chinese). | |
| [92] | 李慧强, 徐旭, 朱清波, 等. 以粉末燃料冲压发动机为动力的火星巡航飞行器方案初步研究[J]. 载人航天, 2021, 27(3): 334-338. |
| LI H Q, XU X, ZHU Q B, et al. Study on preliminary scheme of Mars cruise vehicle powered by powder fuel ramjet[J]. Manned Spaceflight, 2021, 27(3): 334-338 (in Chinese). | |
| [93] | XI W X, LIU J, REN M F. Improvement of mixing efficiency in the combustion chamber of a powder-fuel ramjet engine[J]. Frontiers in Energy Research, 2021, 9: 756905. |
| [94] | SUN H J, HU C B, ZHU X F, et al. Experimental investigation on incipient mass flow rate of micro aluminum powder at high pressure[J]. Experimental Thermal and Fluid Science, 2017, 83: 231-238. |
| [95] | SUN H J, HU C B, ZHANG T, et al. Experimental investigation on mass flow rate measurements and feeding characteristics of powder at high pressure[J]. Applied Thermal Engineering, 2016, 102: 30-37. |
| [96] | DING H M, ZHUO C F, CHEN X, et al. Numerical study on powder fuel injection characteristics of powder fuel scramjet[J]. Powder Technology, 2022, 399: 117169. |
| [97] | LUO S B, FENG Y B, SONG J W, et al. Powder fuel transport process and mixing characteristics in cavity-based supersonic combustor with different injection schemes[J]. Aerospace Science and Technology, 2022, 128: 107798. |
| [98] | ZHAO K C, XIA Z X, MA L K, et al. Large-eddy simulation of gas-particle two-phase jet into a supersonic crossflow[J]. Physics of Fluids, 2023, 35(2): 023310. |
| [99] | HE Z, TIAN Y, LE J L, et al. Effects of pulsed injection on ignition delay and combustion performance in a hydrogen-fuel scramjet combustor[J]. Acta Astronautica, 2022, 193: 152-162. |
| [100] | MIKOLAITIS D W, SEGAL C, CHANDY A. Ignition delay for jet propellant 10/air and jet propellant 10/high-energy density fuel/air mixtures[J]. Journal of Propulsion and Power, 2003, 19(4): 601-606. |
| [101] | LIANG D L, LIU J Z, ZHOU Y N, et al. Ignition delay kinetic model of boron particle based on bidirectional diffusion mechanism[J]. Aerospace Science and Technology, 2018, 73: 78-84. |
| [102] | FENG Y C, XIA Z X, HUANG L Y, et al. Effect of ambient temperature on the ignition and combustion process of single aluminium particles[J]. Energy, 2018, 162: 618-629. |
| [1] | Xiang ZHAO, Zhixun XIA, Chuanbo FANG, Likun MA, Chaolong LI, Yifan DUAN. Theoretical analysis of performance of solid rocket scramjet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126971-126971. |
| [2] | Zhixun XIA, Yunchao FENG, Likun MA, Binbin CHEN, Chaolong LI, Pengnian YANG, Yandong LIU, Ying QU, Kangchun ZHAO, Libei ZHAO, Penghao REN. Research progress of solid rocket scramjet combustion technology [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528793-528793. |
| [3] | LI Chaolong, XIA Zhixun, MA Likun, ZHAO Xiang, LUO Zhenbing, DUAN Yifan. Experiment on performance of solid rocket scramjet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 126075-126075. |
| [4] | Shi Feng;Yi Jing-hai;Xu Zhong. EXPERIMENTAL INVESTIGATION ON GAS-PARTICLE FLOW IN CASCADE BY HIGH SPEED PHOTOGRAPH [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(12): 636-638. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

