| [1] |
FU S, ZHANG Y J, LIN L, et al. Deep residual LSTM with domain-invariance for remaining useful life prediction across domains[J]. Reliability Engineering & System Safety, 2021, 216: 108012.
|
| [2] |
HENG A, ZHANG S, TAN A C C, et al. Rotating machinery prognostics: State of the art, challenges and opportunities[J]. Mechanical Systems and Signal Processing, 2009, 23(3): 724-739.
|
| [3] |
EL-THALJI I, JANTUNEN E. A summary of fault modelling and predictive health monitoring of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2015, 60: 252-272.
|
| [4] |
SI X S, WANG W B, HU C H, et al. Remaining useful life estimation–A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14.
|
| [5] |
韩淞宇, 邵海东, 姜洪开, 等. 基于提升卷积神经网络的航空发动机高速轴承智能故障诊断[J]. 航空学报, 2022, 43(9): 625479.
|
|
HAN S Y, SHAO H D, JIANG H K, et al. Intelligent fault diagnosis of aero-engine high-speed bearings using enhanced CNN[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625479 (in Chinese).
|
| [6] |
李晖, 陈银超, 孙绍山, 等. 基于联邦图网络的转子系统故障诊断方法[J]. 航空学报, 2024, 45(17): 530611.
|
|
LI H, CHEN Y C, SUN S S, et al. Fault diagnosis method of rotor system based on federated graph network[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530611 (in Chinese).
|
| [7] |
胡渊豪, 宋艺博, 刘家辉, 等. 基于注意力卷积胶囊网络的电液比例伺服阀故障诊断[J]. 航空学报, 2024, 45(15): 630407.
|
|
HU Y H, SONG Y B, LIU J H, et al. Fault diagnosis of electro-hydraulic proportional servo valves based on attention convolutional capsule networks[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 630407 (in Chinese).
|
| [8] |
XIANG S, QIN Y, LUO J, et al. Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction[J]. Reliability Engineering & System Safety, 2021, 216: 107927.
|
| [9] |
LI H, LI Y, WANG Z J, et al. Remaining useful life prediction of aero-engine based on PCA-LSTM[C]∥2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO). Piscataway: IEEE Press, 2021: 63-66.
|
| [10] |
CHEN Z H, WU M, ZHAO R, et al. Machine remaining useful life prediction via an attention-based deep learning approach[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2521-2531.
|
| [11] |
PALANGI H, DENG L, SHEN Y L, et al. Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(4): 694-707.
|
| [12] |
HUA Y X, ZHAO Z F, LI R P, et al. Deep learning with long short-term memory for time series prediction[J]. IEEE Communications Magazine, 2019, 57(6): 114-119.
|
| [13] |
杨超, 张开富. 基于PSO-BiLSTM神经网络的机身筒段应力预测[J]. 航空学报, 2023, 44(7): 426991.
|
|
YANG C, ZHANG K F. Stress prediction of fuselage tube section based on PSO-BiLSTM neural network[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 426991 (in Chinese).
|
| [14] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
|
| [15] |
HU J J, WANG X F, ZHANG Y, et al. Time series prediction method based on variant LSTM recurrent neural network[J]. Neural Processing Letters, 2020, 52(2): 1485-1500.
|
| [16] |
ZHAO Z Q, LIANG B, WANG X Q, et al. Remaining useful life prediction of aircraft engine based on degradation pattern learning[J]. Reliability Engineering & System Safety, 2017, 164: 74-83.
|
| [17] |
GUO X J, CHEN L, SHEN C Q. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement, 2016, 93: 490-502.
|
| [18] |
LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1-11.
|
| [19] |
ZHANG C, LIM P, QIN A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2306-2318.
|
| [20] |
LI H, ZHAO W, ZHANG Y X, et al. Remaining useful life prediction using multi-scale deep convolutional neural network[J]. Applied Soft Computing, 2020, 89: 106113.
|
| [21] |
LI X Q, JIANG H K, LIU Y, et al. An integrated deep multiscale feature fusion network for aeroengine remaining useful life prediction with multisensor data[J]. Knowledge-Based Systems, 2022, 235: 107652.
|
| [22] |
XU W Y, JIANG Q S, SHEN Y H, et al. New RUL prediction method for rotating machinery via data feature distribution and spatial attention residual network[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3507909.
|