1 |
桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 520734.
|
|
GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520734 (in Chinese).
|
2 |
LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767.
|
3 |
周莉, 徐浩军, 龚胜科, 等. 飞机结冰特性及防除冰技术研究[J]. 中国安全科学学报, 2010, 20(6): 105-110.
|
|
ZHOU L, XU H J, GONG S K, et al. Research of aircraft icing characteristics and anti-icing and de-icing technology[J]. China Safety Science Journal (CSSJ), 2010, 20(6): 105-110 (in Chinese).
|
4 |
陈勇, 孔维梁, 刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战[J]. 航空学报, 2023, 44(1): 626973.
|
|
CHEN Y, KONG W L, LIU H. Challenge of aircraft design under operational conditions of supercooled large water droplet icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 626973 (in Chinese).
|
5 |
GUO Z Q, GUO X F, YANG Q, et al. Heat transfer characteristics of unexpanded jet impingement in piccolo hot air anti-icing chamber[J]. Applied Thermal Engineering, 2022, 200: 117540.
|
6 |
PAPADAKIS M, WONG S H, YEONG H W, et al. Icing tunnel experiments with a hot air anti-icing system: AIAA-2008-0444[R]. Reston: AIAA, 2008.
|
7 |
GUO Z Q, ZHENG M, YANG Q, et al. Effects of flow parameters on thermal performance of an inner-liner anti-icing system with jets impingement heat transfer[J]. Chinese Journal of Aeronautics, 2021, 34(9): 119-132.
|
8 |
CABLER S. Aircraft Ice Protection: AC_20-73A[R]. Federal Aviation Administration, 2016.
|
9 |
SANTOS L, DOMINGOS R, MARIA R, et al. Sensitivity analysis of a bleed air anti-ice thermal model to geometrical and operational parameters: AIAA-2008-0445[R]. Reston: AIAA, 2008.
|
10 |
杨倩, 郭晓峰, 李芹, 等. 基于POD和代理模型的热气防冰性能预测方法[J]. 航空学报, 2023, 44(1): 626992.
|
|
YANG Q, GUO X F, LI Q, et al. Hot air anti-icing performance estimation method based on POD and surrogate model[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 626992 (in Chinese).
|
11 |
PELLISSIER M P C, HABASHI W G, PUEYO A. Optimization via FENSAP-ICE of aircraft hot-air anti-icing systems[J]. Journal of Aircraft, 2011, 48(1): 265-276.
|
12 |
NIU J, SANG W, QIU A, et al. An optimization of anti-icing chamber based on POD and KRIGING[C]∥32nd Congress of the International Council of the Aeronautical Sciences. Washington,D.C.: ICAS, 2020:1132.
|
13 |
CARDOSO J M P, COUTINHO J G F, DINIZ P C. Embedded computing for high performance: Efficient mapping of computations using customization, code transformations and compilation[M]. Cambridge: Morgan Kaufmann Publishers, an imprint of Elsevier, 2017.
|
14 |
NAYAK S. Fundamentals of optimization techniques with algorithms[M]. Pittsburgh: Academic Press, 2020.
|
15 |
SIROVICH L. Turbulence and the dynamics of coherent structures. Ⅰ. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-571.
|
16 |
SIROVICH L. Turbulence and the dynamics of coherent structures. Ⅱ. Symmetries and transformations[J]. Quarterly of Applied Mathematics, 1987, 45(3): 573-582.
|
17 |
SIROVICH L. Turbulence and the dynamics of coherent structures. Ⅲ. Dynamics and scaling[J]. Quarterly of Applied Mathematics, 1987, 45(3): 583-590.
|
18 |
MOODY J, DARKEN C J. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, 1(2): 281-294.
|
19 |
XIE T T, YU H, WILAMOWSKI B. Comparison between traditional neural networks and radial basis function networks[C]∥ 2011 IEEE International Symposium on Industrial Electronics. Piscataway: IEEE Press, 2011: 1194-1199.
|
20 |
MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61.
|
21 |
MORRIS M D, MITCHELL T J. Exploratory designs for computational experiments[J]. Journal of Statistical Planning and Inference, 1995, 43(3): 381-402.
|
22 |
YANG Q, GUO X F, ZHENG H R, et al. Single- and multi-objective optimization of an aircraft hot-air anti-icing system based on Reduced Order Method[J]. Applied Thermal Engineering, 2023, 219: 119543.
|
23 |
CHRISTENSEN E A, BRØNS M, SØRENSEN J N. Evaluation of proper orthogonal decomposition: based decomposition techniques applied to parameter-dependent nonturbulent flows[J]. SIAM Journal on Scientific Computing, 1999, 21(4): 1419-1434.
|