ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (5): 226936.doi: 10.7527/S1000-6893.2022.26936
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Wenlong BAO1, He JIA1,2(), Xiaopeng XUE3, Xuejiao HUANG1, Shuyi GAO1, Wei RONG1, Qi WANG1, Zhuangzhi WU4
Received:
2022-01-11
Revised:
2022-02-16
Accepted:
2022-02-17
Online:
2022-03-14
Published:
2022-02-17
Contact:
He JIA
E-mail:chinajiah@163.com
Supported by:
CLC Number:
Wenlong BAO, He JIA, Xiaopeng XUE, Xuejiao HUANG, Shuyi GAO, Wei RONG, Qi WANG, Zhuangzhi WU. Influence of ‘windows’ structure on inflation process of ringsail parachute[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 226936.
1 | 余莉. 气动减速技术[M]. 北京: 科学出版社, 2018. |
YU L. Aerodynamic deceleration technology[M]. Beijing: Science Press, 2018 (in Chinese). | |
2 | 荣伟. 航天器进入下降与着陆技术[M]. 北京: 北京理工大学出版社, 2018. |
RONG W. Spacecraft entry, descent and landing technology[M]. Beijing: Beijing Institute of Technology Press, 2018 (in Chinese). | |
3 | 贾华明, 杨霞, 李少腾, 等. 环帆伞技术与发展综述[J]. 航天返回与遥感, 2021, 42(3): 41-51. |
JIA H M, YANG X, LI S T, et al. Overview of the technology and development of ringsail parachute[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(3): 41-51 (in Chinese). | |
4 | EWING E G, VICKERS J R. Ringsail parachute design: AFFDL-TR-72-3[R]. Northrop Corporation, 1972. |
5 | TEZDUYAR T, SATHE S, PAUSEWANG J, et al. Air-fabric interaction modeling with the stabilized space-time FSI technique[C]∥The third Asian-Pacific Congress on Computational Mechanics. Kyoto: APCOM, 2007. |
6 | TAKIZAWA K, MOORMAN C, WRIGHT S, et al. Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes[J]. International Journal for Numerical Methods in Fluids, 2011, 65(1-3): 271-285. |
7 | GREATHOUSE J, SCHWING A. Study of geometric porosity on static stability and drag using computational fluid dynamics for rigid parachute shapes: AIAA-2015-2131[R]. Reston: AIAA, 2015. |
8 | 甘小娇. 环帆伞结构透气量对气动性能的影响[D]. 南京: 南京航空航天大学, 2015: 25-38. |
GAN X J. Effect of ringsail parachute structure permeability on aerodynamic performance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 25-38 (in Chinese). | |
9 | 高畅, 余莉, 张思宇. 环片数量对环帆伞气动性能的影响[J]. 海军航空工程学院学报, 2020, 35(4): 297-302. |
GAO C, YU L, ZHANG S Y. The influence of the number of rings on the aerodynamic performance of the ringsail parachute[J]. Journal of Naval Aeronautical and Astronautical University, 2020, 35(4): 297-302 (in Chinese). | |
10 | 甘和麟. 环帆伞阻力特性及其尺寸效应的研究[D]. 北京: 中国空间技术研究院, 2014: 56-58. |
GAN H L. Analysis of ringsail drag characteristics and scale effects[D]. Beijing: China Academy of Space Technology, 2014: 56-58 (in Chinese). | |
11 | 杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报, 2015, 33(5): 714-719. |
YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica, 2015, 33(5): 714-719 (in Chinese). | |
12 | 尚小娟, 童明波, 张红英. 带牵顶伞的大面积环帆伞充气性能分析[J]. 航天返回与遥感, 2010, 31(4): 21-26. |
SHANG X J, TONG M B, ZHANG H Y. Performance analysis for inflation of large ringsail parachute with an apex grogue[J]. Spacecraft Recovery & Remote Sensing, 2010, 31(4): 21-26 (in Chinese). | |
13 | 程涵, 余莉, 夏刚. 降落伞充气过程中“瓶颈”效应[J]. 国防科技大学学报, 2013, 35(1): 48-52. |
CHENG H, YU L, XIA G. A study on “bottleneck” phenomenon during parachute inflation[J]. Journal of National University of Defense Technology, 2013, 35(1): 48-52 (in Chinese). | |
14 | ANDERSON B P, GREATHOUSE J, POWELL J, et al. Sub-scale orion parachute test results from the national full-scale aerodynamics complex 80-by 120-ft wind tunnel:JSC-CN-39271[R]. Washington.D.C.: NASA, 2017. |
15 | DAUM J S, PETERSEN M L. Orion capsule parachute assembly system(CPAS) overload testing approach and results: AIAA-2019-3142[R]. Reston: AIAA, 2019. |
16 | 方世兴, 黄伟, 荣伟. 盘缝带伞细化结构的仿真影响研究[J]. 航天返回与遥感, 2017, 38(2): 17-26. |
FANG S X, HUANG W, RONG W. Study on the detailed structure of disk-gap-band parachute simulation[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(2): 17-26 (in Chinese). | |
17 | 贾贺, 荣伟, 陈国良. 基于LS-DYNA的降落伞伞衣织物透气性参数仿真验证[J]. 航天返回与遥感, 2009, 30(1): 15-20. |
JIA H, RONG W, CHEN G L. The use of LS-DYNA to simulate the permeability parameters of the parachute canopy[J]. Spacecraft Recovery & Remote Sensing, 2009, 30(1): 15-20 (in Chinese). | |
18 | YANG X, YU L, NIE S C, et al. Aerodynamic performance of the supersonic parachute with material permeability[J]. Journal of Industrial Textiles, 2021, 50(6): 812-829. |
19 | BENSON D J. Computational methods in lagrangian and eulerian hydrocodes[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99: 235-394. |
20 | ERGUN S. Fluid flow through packed columns[J]. Journal of Materials Science and Chemical Engineering, 1952, 48(2): 89-94. |
21 | 张思宇, 余莉, 刘鑫. 翼伞充气过程的流固耦合方法数值仿真[J]. 北京航空航天大学学报, 2020, 46(6): 1108-1115. |
ZHANG S Y, YU L, LIU X. Numerical simulation of parafoil inflation process based on fluid-structure interaction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1108-1115 (in Chinese). | |
22 | 王明振, 曹东风, 吴彬, 等. 基于S-ALE流固耦合方法的飞机水上迫降动力学数值分析[J]. 重庆大学学报, 2020, 43(6): 21-29. |
WANG M Z, CAO D F, WU B, et al. Numerical analysis of aircraft dynamic behavior in ditching based on S-ALE fluid-structure interaction method[J]. Journal of Chongqing University, 2020, 43(6): 21-29 (in Chinese). | |
23 | HUGHES T J R, LIU W K, ZIMMERMAN T K. Lagrangian-eulerian finite element formulation for viscous flows[J]. Computer Methods in Applied Mechanics and Engineering, 1981, 29: 329-349. |
24 | 赵海鸥. LS-DYNA动力分析指南[M]. 北京: 兵器工业出版社, 2003: 164. |
ZHAO H O. Guide to dynamic analysis of LS-DYNA[M]. Beijing: The Publishing House of Ordnance Industry, 2003: 164 (in Chinese). | |
25 | JASON W, NICOLAS A, BENJAMIN T, et al. Porous euler-lagrange coupling application to parachute dynamics[C]∥The 9th International LS-DYNA Users Conference, 2005. |
26 | 王利荣. 降落伞理论与应用[M]. 北京: 宇航出版社, 1997. |
WANG L R. Parachute theory and application[M].Beijing: Astronautic Publishing House, 1997 (in Chinese). |
[1] | Dazhi SUN, Xi CHEN, Weicheng BAO, Wei BIAN, Qijun ZHAO. Interferences of high-speed helicopter fuselage on aerodynamic and aeroacoustic source characteristics of propeller [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529142-529142. |
[2] | Yurou DAI, Jian LI, Xiaopeng XUE, Wei RONG. Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128811-128811. |
[3] | Yihui HAN, Jun HU, Yong YU, Jianqiao YU. Wind tunnel experimental verification of aerodynamic control force of cross⁃shaped flexible control surface [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 129280-129280. |
[4] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[5] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[6] | Chang LIU, Yunlong ZHANG, Zhijiang YAN, Lei ZHAO, Chen JI. Wind tunnel test of fluctuating pressure on aeroelastic scaled model of hammerhead launch vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 128384-128384. |
[7] | Jianqiao LUO, Chunlei XIE, Zehua JIN, Junhui MENG. Water-skipping fluid-structure interaction simulation and slippable area study of trans-medium vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528632-528632. |
[8] | Qiulin LI, Li ZHOU, Peng SUN, Jingwei SHI, Zhanxue WANG. Influence mechanism of aspect ratio on fluid-structure interaction characteristics of serpentine nozzle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628204-628204. |
[9] | ZHOU Wei, MA Peiyang, GUO Zheng, WANG Daoping, ZHOU Ruisun. Research of combined fixed-wing UAV based on wingtip chained [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 325946-325946. |
[10] | AN Liping, WANG Hao, WANG Yangang, ZHU Zihuan. Wet compression performance and flow characteristics of transonic compressor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 126024-126024. |
[11] | WU Qiang, XU Haojun, WEI Yang, PEI Binbin, XUE Yuan. Aerodynamics/flight dynamics coupling characteristics of aircraft under icing conditions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 125566-125566. |
[12] | JIA Hongyin, ZHANG Peihong, ZHAO Wei, ZHOU Guiyu, WU Xiaojun. Aerodynamic characteristics of vertical recovery of rocket sub-stage and influence of engine nozzle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 623995-623995. |
[13] | ZHANG Yujia, ZUO Guang, XU Yizhe, DU Ruofan, ZHAO Fei, QU Feng. Numerical simulation on aerodynamic characteristics of new type control surface of Starship [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 624058-624058. |
[14] | LI Jin, GENG Xiangren, CHEN Jianqiang, JIANG Dingwu, LI Hongzhe. Application of DSMC quantum kinetic model in re-entry flow of Mars [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 123240-123240. |
[15] | ZHAO Zhenshan, FENG Jian, MIAO Shuming, DU Yu. Blended-wing-body aircraft overhanging engine layout technology based on numerical simulation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(9): 623051-623051. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 316
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 342
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341