ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (2): 326507.doi: 10.7527/S1000-6893.2022.26507
Previous Articles Next Articles
Received:
2021-10-13
Revised:
2021-11-15
Accepted:
2022-02-28
Online:
2023-01-25
Published:
2022-03-04
Contact:
Chen ZHANG
E-mail:chenzhang@csu.ac.cn
Supported by:
CLC Number:
Chen ZHANG, Hao ZHANG. Lunar-gravity-assisted low-energy transfer from Earth into Distant Retrograde Orbit (DRO)[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 326507.
Table 2
Simulation parameters
参数 | 数值 |
---|---|
地月质量参数 μ | 0.012 151 |
太阳质量常数 μS/((km)3·s-2) | 132 712 440 017.987 0 |
地球质量常数 μE/((km)3·s-2) | 398 600.432 896 939 2 |
月球质量常数 μM/((km)3·s-2) | 4 902.800 582 147 764 |
重力加速度 g0/(m·s-2) | 9.806 65 |
地球平均半径 RE/km | 6 378 |
月球平均半径 RM/km | 1 738 |
归一化距离单位 LU/km | 384 400 |
归一化时间单位 TU/d | 4.348 113 05 |
归一化速度单位 VU/d | 1.023 232 81 |
粒子群种群数 | 200 |
粒子群迭代数 | 200 |
多步打靶离散点 n | 20 |
LEO地心距 R*/km | 6 578 |
LEO轨道倾角 i*/(°) | 28.5 |
DRO历元 τ*/(jd,tdb) | 2 460 096.482 613 85 |
DRO初值 r*dro(τ*)/km | [-276 870.471 840 84, -141 758.243 742 15, -59 274.294 275 02] |
DRO初值 | [0.740 021 87, -0.999 801 19, -0.567 720 67] |
Table 3
Best solution with minimum cost
参数 | 数值 |
---|---|
LEO出发脉冲/(km·s-1) | 3.127 286 50 |
DRO到达脉冲/(km·s-1) | 0.066 090 92 |
总脉冲/(km·s-1) | 3.193 377 42 |
总时间/d | 102.880 327 67 |
出发时间/(jd,tdb) | 2 459 966.777 246 46 |
出发时卫星位置/km | [-6 467.153 118 231 2, -1 184.790 001 988 07, -209.953 275 562 116] |
出发时卫星速度/(km·s-1) | [1.892 057 726 846 54, -9.407 190 176 785 86, -5.194 880 417 429 38] |
近月点时间/(jd,tdb) | 2 459 970.766 318 36 |
近月点卫星位置/km | [367 442.092 848 141, 42 046.615 513 482 8, -980.575 109 454 213] |
近月点卫星速度/(km·s-1) | [1.270 167 875 014 64, 0.009 235 056 270 175 26, -0.023 871 760 089 912 7] |
入轨时间/(jd,tdb) | 2 460 069.657 574 13 |
入轨时卫星位置/km | [-239 144.207 929 066, -187 302.212 790 807, -85 040.874 971 346 8] |
入轨时卫星速度/(km·s-1) | [0.881 503 757 995 025, -0.982 638 475 555 1, -0.534 365 964 086 031] |
入轨时DRO位置/km | [-239 144.207 929 066, -187 302.212 790 807, -85 040.874 971 346 8] |
入轨时DRO速度/(km·s-1) | [0.845 193 643 816 302, -0.927 576 393 506 761, -0.538 579 266 758 445] |
1 | National Aeronautics and Space Administration. NASA’s lunar exploration program overview [EB/OL].(2020-09-01)[2022-02-28].. |
2 | 国家航天局. 中俄两国签署合作建设国际月球科研站谅解备忘录[EB/OL].(2021-03-09)[2022-02-28].. |
3 | WHITLEY R, MARTINEZ R. Options for staging orbits in cislunar space[C]∥2016 IEEE Aerospace Conference. Piscataway: IEEE Press, 2016. |
4 | CAPDEVILA L R, HOWELL K C. A transfer network linking Earth, Moon, and the triangular libration point regions in the Earth-Moon system[J]. Advances in Space Research, 2018, 62(7): 1826-1852. |
5 | 曾豪, 李朝玉, 彭坤, 等. 地月空间NRHO与DRO在月球探测中的应用研究[J]. 宇航学报, 2020, 41(7): 910-919. |
ZENG H, LI Z Y, PENG K, et al. Research on application of Earth-Moon NRHO and DRO for lunar exploration[J]. Journal of Astronautics, 2020, 41(7): 910-919 (in Chinese). | |
6 | CONDON G L, WILLIAMS J. Asteroid redirect crewed mission nominal design and performance[C]∥ SpaceOps 2014 Conference. Reston: AIAA, 2014. |
7 | DAWN T F, GUTKOWSKI J, BATCHA A,et al. Trajectory design considerations for exploration mission 1: AIAA-2018-0968[R]. Reston: AIAA, 2018. |
8 | BELBRUNO E. Lunar capture orbits, a method of constructing Earth Moon trajectories and the lunar GAS mission: AIAA-1987-1054[R]. Reston: AIAA, 1987. |
9 | PARKER J S, ANDERSON R L. Low-energy lunar trajectory design: Parker/low-energy[M]. Hoboken: John Wiley & Sons, Inc., 2014. |
10 | BELBRUNO E A, MILLER J K. Sun-perturbed Earth-to-Moon transfers with ballistic capture[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(4): 770-775. |
11 | ZUBER M T, SMITH D E, WATKINS M M, et al. Gravity field of the moon from the gravity recovery and interior laboratory (GRAIL) mission[J]. Science, 2013, 339(6120): 668-671. |
12 | WALKER R, CROSS M. The European student Moon orbiter (ESMO): A lunar mission for education, outreach and science[J]. Acta Astronautica, 2010, 66(7-8): 1177-1188. |
13 | PARRISH N L, KAYSER E, UDUPA S,et al. Ballistic lunar transfers to near rectilinear halo orbit: Operational considerations: AIAA-2020-1466[R]. Reston: AIAA, 2020. |
14 | SONG Y J, KIM Y R, BAE J, et al. Overview of the flight dynamics subsystem for Korea pathfinder lunar orbiter mission[J]. Aerospace, 2021, 8(8): 222. |
15 | KOON W S, LO M W, MARSDEN J E, et al. Dynamical systems, the three-body problem and space mission design[M]. Singapore: World Scientific Publishing Company, 2000: 1167-1181. |
16 | YAGASAKI K. Sun-perturbed Earth-to-Moon transfers with low energy and moderate flight time[J]. Celestial Mechanics and Dynamical Astronomy, 2004, 90(3-4): 197-212. |
17 | XU M, XU S J. Exploration of distant retrograde orbits around Moon[J]. Acta Astronautica, 2009, 65(5-6): 853-860. |
18 | TAN M H, ZHANG K, LV M B, et al. Transfer to long term distant retrograde orbits around the Moon[J]. Acta Astronautica, 2014, 98: 50-63. |
19 | SCHEUERLE S T, MCCARTHY B P, HOWELL K C. Construction of ballistic lunar transfers leveraging dynamical systems techniques[C]∥AAS/AIAA Astrodynamics Specialist Conference. Reston: AIAA, 2020. |
20 | ZHANG Z T, HOU X Y. Transfer orbits to the Earth-Moon triangular libration points[J]. Advances in Space Research, 2015, 55(12): 2899-2913. |
21 | TOPPUTO F. On optimal two-impulse Earth-Moon transfers in a four-body model[J]. Celestial Mechanics and Dynamical Astronomy, 2013, 117(3): 279-313. |
22 | TSELOUSOVA A, TROFIMOV S, SHIROBOKOV M. Geometric approach to the design of lunar-gravity-assisted low-energy Earth-Moon transfers[C]∥AAS/AIAA Astrodynamics Specialist Conference.Reston:AIAA, 2021. |
23 | Space Exploration Technologies Corporation. Falcon 9 launch vehicle payload user’s guide[R]. Hawthrone:SpaceX, 2008. |
24 | ZIMOVAN E M. Characteristics and design strategies for near rectilinear halo orbits within the Earth-Moon system[D]. West Lafayette: Purdue University, 2017: 1-152. |
25 | HÉNON M. Numerical exploration of the restricted problem. V. Hill's case: Periodic orbits and their stability[J]. Astronomy and Astrophysics, 1969, (1):223-238. |
26 | BEZROUK C, PARKER J S. Long term evolution of distant retrograde orbits in the Earth-Moon system[J]. Astrophysics and Space Science, 2017, 362(9): 1-11. |
27 | WELCH C M, PARKER J S, BUXTON C. Mission considerations for transfers to a distant retrograde orbit[J]. The Journal of the Astronautical Sciences, 2015, 62(2): 101-124. |
28 | CONTE D, CARLO M D, HO K, et al. Earth-Mars transfers through Moon distant retrograde orbits[J]. Acta Astronautica, 2018, 143: 372-379. |
[1] | Xuan CHENG, Yixi ZHAO, Shuman YOU. Trajectory optimization of robot-assisted flexible flanging [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426886-426886. |
[2] | Honglun WANG, Yanxiang WANG, Yiheng LIU. Recovery trajectory optimization for UAV towed aerial recovery based on trajectory mapping [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 628775-628775. |
[3] | Wei LI, Yan GUO, Ning LI, Cuntao LIU, Hao YUAN. Intelligent reflector surface assisted UAV mobile edge computing task data maximization method [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 328486-328486. |
[4] | JIANG Peng, GUO Dong, HAN Liang, LI Qingdong, REN Zhang. Trajectory optimization for cooperative reentry of multiple hypersonic glide vehicle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S1): 723776-723776. |
[5] | AN Ze, XIONG Fenfen, LIANG Zhuonan. Landing-phase guidance of rocket using bias proportional guidance and convex optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 323606-323606. |
[6] | MA Dongli, ZHANG Liang, YANG Muqing, XIA Xinglu, WANG Shaoqi. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 623418-623418. |
[7] | ZHANG Rouhe, FAN Yazhuo, SHE Zhiyong, CUI Naigang. TSTO vehicle first-stage return trajectory: Optimization and onboard generation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(11): 623856-623856. |
[8] | WANG Jiawei, ZHANG Ran, HAO Zeming, LI Huifeng. Real-time trajectory optimization for hypersonic vehicles with Proximal-Newton-Kantorovich convex programming [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(11): 624051-624051. |
[9] | TIAN Bailing, LI Zhiyu, WU Siyuan, ZONG Qun. Reentry trajectory optimization, guidance and control methods for reusable launch vehicles: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(11): 624072-624072. |
[10] | YONG Enmi, LIU Shenshen, CHENG Yanqing, QIAN Weiqi. Mode stability analysis of hypersonic reentry vehicle for trajectory optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(7): 122666-122666. |
[11] | ZHANG Liming, XING Jianjun, CHEN Ziang, WANG Yi, YU Yang. Effect of Dryden atmospheric turbulence on minimum-energy trajectory of stratospheric airships [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(1): 120180-120180. |
[12] | DU Xin, LI Haiyang, SHEN Hongxin. Skip Reentry Trajectory Optimization Based on Analysis of Path Constraints [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(5): 1265-1275. |
[13] | RUAN Jian'gang, HE Guoqiang, LYU Xiang. Trajectory Optimization Method in Two-stage-to-orbit RBCC-RKT Launch Vehicle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(5): 1284-1291. |
[14] | YAN Liang, LI Yuan, ZHAO Jiguang, DU Xiaoping. Trajectory Real-time Optimization Based on Variable Node Inverse Dynamics in the Virtual Domain [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(12): 2794-2803. |
[15] | MENG Wanli, CHEN Renliang. Trajectory Optimization of Helicopter Autorotation Landing After One Engine Failure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(9): 1599-1607. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341