1 |
FRANCIS M S. Air vehicle management with integrated thrust-vector control[J]. AIAA Journal, 2018, 56(12): 4741-4751.
|
2 |
王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报, 2020, 41(6): 524057.
|
|
WANG H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524057 (in Chinese).
|
3 |
程荣辉, 张志舒, 陈仲光. 第四代战斗机动力技术特征和实现途径[J]. 航空学报, 2019, 40(3): 022698.
|
|
CHENG R H, ZHANG Z S, CHEN Z G. Technical characteristics and implementation of the fourth-generation jet fighter engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 022698 (in Chinese).
|
4 |
KOWAL H J. Advances in thrust vectoring and the application of flow-control technology[J]. Canadian Aeronautics and Space Journal, 2002, 48(2): 145-151.
|
5 |
MARUYAMA Y, SAKATA M, TAKAHASHI Y. Performance analyses of fluidic thrust vector control system using dual throat nozzle[J]. AIAA Journal, 2021, 60(3): 1730-1744.
|
6 |
史经纬. 固定几何气动矢量喷管流动机理及性能评估技术研究[D]. 西安: 西北工业大学, 2015.
|
|
SHI J W. Investigation on flow mechanism and performance estimation of fixed-geometric thrust vectoring nozzle[D]. Xi’an: Northwestern Polytechnical University, 2015 (in Chinese).
|
7 |
DEERE K. Summary of fluidic thrust vectoring research at NASA langley research center[C]∥ 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: 3800.
|
8 |
CHIARELLI C, JOHNSEN R, SHIEH C, et al. Fluidic scale model multi-plane thrust vector control test results[C]∥ 29th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1993: 2433.
|
9 |
WING D J, GIULIANO V J. Fluidic thrust vectoring of an axisymmetric exhaust nozzle at static conditions[C]∥1997 ASME Fluids Engineering Division Summer Meeting. New York: ASME, 1997: DWSA M97-3228.
|
10 |
DEERE K. Computational investigation of the aerodynamic effects on fluidic thrust vectoring[C]∥ 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2000: 3598.
|
11 |
WAITHE K, DEERE K. An experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring[C]∥ 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: 3802.
|
12 |
FORGHANY F, TAEIBE-RAHNI M, ASADOLLAHI-GHOHIEH A. Numerical investigation of freestream flow effects on thrust vector control performance[J]. Ain Shams Engineering Journal, 2018, 9(4): 3293-3303.
|
13 |
FORGHANY F, TAEIBE R M, ASADOLLAHI G, et al. Numerical investigation of injection angle effects on shock vector control performance[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(2): 405-417.
|
14 |
YOUNES K, HICKEY J P. Fluidic thrust shock-vectoring control: A sensitivity analysis[J]. AIAA Journal, 2020, 58(4): 1887-1890.
|
15 |
王占学, 李志杰. 喷管气动参数对推力矢量影响的数值模拟[J]. 推进技术, 2008, 29(2): 187-193.
|
|
WANG Z X, LI Z J. Effect of aerodynamic parameters of main and secondary flow path on thrust vectoring[J]. Journal of Propulsion Technology, 2008, 29(2): 187-193 (in Chinese).
|
16 |
张晓博, 王占学, 刘增文. 气动矢量喷管二次流对发动机性能的影响[J]. 推进技术, 2013, 34(1): 3-7.
|
|
ZHANG X B, WANG Z X, LIU Z W. Influence of secondary flow in fluidic thrust vector nozzle on aero-engine performance[J]. Journal of Propulsion Technology, 2013, 34(1): 3-7 (in Chinese).
|
17 |
史经纬, 王占学, 刘增文, 等. 二次流喷口形状对激波矢量控制喷管推力矢量特性影响[J]. 航空动力学报, 2013, 28(12): 2678-2684.
|
|
SHI J W, WANG Z X, LIU Z W, et al. Effects of secondary injection forms on thrust vector performance of shock vector controlling nozzle[J]. Journal of Aerospace Power, 2013, 28(12): 2678-2684 (in Chinese).
|
18 |
王猛杰, 额日其太, 王强, 等. 激波矢量控制喷管落压比影响矢量性能及分离区控制数值模拟[J]. 航空动力学报, 2015, 30(3): 526-536.
|
|
WANG M J, ERIQITAI, WANG Q, et al. Numerical simulaton of nozzle pressure ratio effect on vector performance and separation control for shock vector control nozzle[J]. Journal of Aerospace Power, 2015, 30(3): 526-536 (in Chinese).
|
19 |
王晓明, 刘辉, 韩龙柱, 等. 激波诱导推力矢量喷管不同气体喷注时的性能分析[J]. 北京航空航天大学学报, 2018, 44(11): 2267-2272.
|
|
WANG X M, LIU H, HAN L Z, et al. Performance analysis of shock thrust vector nozzle under different gas injections[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2267-2272 (in Chinese).
|
20 |
ZHAO H, GAO Z H, XU F, et al. Review of robust aerodynamic design optimization for air vehicles[J]. Archives of Computational Methods in Engineering, 2019, 26(3): 685-732.
|
21 |
ZHAO H, GAO Z H, GAO Y, et al. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J]. Aerospace Science and Technology, 2017, 68: 530-542.
|
22 |
SCHAEFER J A, WEST T, HOSDER S, et al. Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows[C]∥ 22nd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2015: 2461.
|
23 |
陈宪, 陈诚, 黄江涛, 等. 腹部襟翼对飞翼布局飞行器起降气动特性的影响[J]. 航空学报, 2022, 43(3): 125028.
|
|
CHEN X, CHEN C, HUANG J T, et al. Effects of belly flap on take-off and landing characteristics of a flying-wing vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 125028 (in Chinese).
|
24 |
舒博文, 杜一鸣, 高正红, 等. 典型航空分离流动的雷诺应力模型数值模拟[J]. 航空学报, 2022, 43(11): 487-502.
|
|
SHU B W, DU Y M, GAO Z H, et al. Numerical simulation of Reynolds stress model of typical aerospace separated flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 487-502 (in Chinese).
|
25 |
HOSDER S, WALTERS R, BALCH M. Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: 1939.
|
26 |
SOBOL′ I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1-3): 271-280.
|
27 |
SOBOL I M, KUCHERENKO S. Derivative based global sensitivity measures and their link with global sensitivity indices[J]. Mathematics and Computers in Simulation, 2016, 71(10): 3009-3017.
|