[1] ZIO E, PODOFILLINI L. Accounting for components interactions in the differential importance measure[J]. Reliability Engineering & System Safety, 2006, 91(10-11):1163-1174.
[2] DO VAN P, BARROS A, BERENGUER C. Differential importance measure of Markov models using perturbation analysis[C]//European Safety and Reliability Conference (ESREL 2009). Abingdon, UK:Taylor & Francis, 2009:981-987.
[3] BORGONOVO E, APOSTOLAKIS G E. Comparison of global sensitivity analysis techniques and importance measures in PSA[J]. Reliability Engineering & System Safety, 2003, 79(2):175-185.
[4] VON GRIENSVEN A, MEIXNER T, GRUNWALD S, et al. A global sensitivity analysis tool for the parameters of multi-variable catchment models[J]. Journal of Hydrology, 2006, 324(1-4):10-23.
[5] SALTELLI A. Sensitivity analysis for importance assessment[J]. Risk Analysis, 2002, 22(3):579-590.
[6] HELTON J C, DAVIS F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering & System Safety, 2003, 81(1):23-69.
[7] HELTON J C. Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal[J]. Reliability Engineering & System Safety, 1993, 42(2):327-367.
[8] SALTELLI A, MARIVOET J. Non-parametric statistics in sensitivity analysis for model output:A comparison of selected techniques[J]. Reliability Engineering & System Safety, 1990, 28(2):229-253.
[9] CHUN M H, HAN S J, TAK N I L. An uncertainty importance measure using a distance metric for the change in a cumulative distribution function[J]. Reliability Engineering & System Safety, 2000, 70(3):313-321.
[10] LIU H, CHEN W, SUDJIANTO A. Relative entropy based method for probabilistic sensitivity analysis in engineering design[J]. Journal of Mechanical Design, 2006, 128(2):326-336.
[11] BORGONOVO E. A new uncertainty importance measure[J]. Reliability Engineering & System Safety, 2007, 92(6):771-784.
[12] CUI L J, LU Z Z, ZHAO X P. Moment-independent importance measure of basic random variable and its probability density evolution solution[J]. Science China Technological Sciences, 2010, 53(4):1138-1145.
[13] LI L Y, LU Z Z, FENG J, et al. Moment-independent importance measure of basic variable and its state dependent parameter solution[J]. Structural Safety, 2012, 38:40-47.
[14] SOBOL' I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1):271-280.
[15] SALTELLI A, ANNONI P, AZZINI I, et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[J]. Computer Physics Communications, 2010, 181(2):259-270.
[16] ARCHER G E B, SALTELLI A, SOBOL I M. Sensitivity measures, ANOVA-like techniques and the use of bootstrap[J]. Journal of Statistical Computation and Simulation, 1997, 58(2):99-120.
[17] SOBOL' I M. On sensitivity estimation for nonlinear mathematical models[J].Matematicheskoe Modelirovanie, 1990, 2(1):112-118.
[18] SALTELLI A, TARANTOLA S. On the relative importance of input factors in mathematical models:Safety assessment for nuclear waste disposal[J]. Journal of the American Statistical Association, 2002, 97(459):702-709.
[19] WEI P, LU Z Z, SONG J. A new variance-based global sensitivity analysis technique[J]. Computer Physics Communications, 2013, 184(11):2540-2551.
[20] TARANTOLA S, KOPUSTINSKAS V, BOLADO-LAVIN R, et al. Sensitivity analysis using contribution to sample variance plot:Application to a water hammer model[J]. Reliability Engineering & System Safety, 2012, 99:62-73.
[21] RATTO M, PAGANO A, YOUNG P. State dependent parameter metamodelling and sensitivity analysis[J]. Computer Physics Communications, 2007, 177(11):863-876.
[22] BARTHELMANN V, NOVAK E, RITTER K. High dimensional polynomial interpolation on sparse grids[J]. Advances in Computational Mathematics, 2000, 12(4):273-288. |