[1] CHEN L W, WANG G L, LU X Y. Numerical investigation of a jet from a blunt body opposing a supersonic flow[J]. Journal of Fluid Mechanics, 2011, 684: 85-110. [2] HASSELBRINK E F, MUNGAL M G. Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets[J]. Journal of Fluid Mechanics, 2001, 443: 1-25. [3] FUJITA M. Axisymmetric oscillations of an opposing jet from a hemispherical nose[J]. AIAA Journal, 1995, 33(10): 1850-1856. [4] AFTOSMIS M, ROGERS S. Effects of jet-interaction on pitch control of a launch abort vehicle: AIAA-2008-1281[R].Reston: AIAA, 2008. [5] 陈芳芳. 高超声速飞行器侧向喷流数值研究[D].哈尔滨: 哈尔滨工业大学, 2012: 1-2. CHEN F F. Numerical investigations of a transverse jet interaction with supersonic free stream[D].Harbin: Harbin Institute of Technology, 2012: 1-2 (in Chinese). [6] 耿湘人, 桂业伟, 王安龄, 等. 利用二维平面和轴对称逆向喷流减阻和降低热流的计算研究[J]. 空气动力学学报, 2006, 24(1): 85-89. GENG X R, GUI Y W, WANG A L, et al. Numerical investigation on drag and heat-transfer reduction using 2-D planar and axisymmetrical forward facing jet[J]. Acta Aerodynamica Sinica, 2006, 24(1): 85-89 (in Chinese). [7] 戎宜生, 刘伟强. 再入飞行器鼻锥逆向喷流对流场及气动热的影响[J]. 航空学报, 2010, 31(8): 1552-1557. RONG Y S, LIU W Q. Influence of opposing jet on flow field and aerodynamic heating at nose of a reentry vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1552-1557 (in Chinese). [8] 王泽江, 李杰, 曾学军, 等. 逆向喷流对双锥导弹外形减阻特性的影响[J]. 航空学报, 2020, 41(12): 124116. WANG Z J, LI J, ZENG X J, et al. Effect of opposing jet on drag reduction characteristics of double-cone missile shape[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124116 (in Chinese). [9] 何开锋, 董维中, 陈坚强, 等. 超声速钝体空气和钾元素混合物喷流流场的数值研究[J]. 空气动力学学报, 2006, 24(1): 90-94, 101. HE K F, DONG W Z, CHEN J Q, et al. Numerical studies of flowfields around the supersonic blunt body with the jet of the mixture of air and kalium[J]. Acta Aerodynamica Sinica, 2006, 24(1): 90-94, 101 (in Chinese). [10] ANDERSON J D. Hypersonic and high temperature gas dynamics[M].2nd ed. Reston: AIAA, 2006: 16-20. [11] SRIVASTAVA B. Lateral jet control of a supersonic missile: computational and experimental comparisons[J]. Journal of Spacecraft and Rockets, 1998, 35(2): 140-146. [12] 杨彦广, 刘君, 唐志共. 横向喷流干扰中的真实气体效应研究[J]. 空气动力学学报, 2006, 24(1): 28-33. YANG Y G, LIU J, TANG Z G. A study of real gas effects on lateral jet interaction[J]. Acta Aerodynamica Sinica, 2006, 24(1): 28-33 (in Chinese). [13] FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2): 337-368. [14] ROCKWELL D, NAUDASCHER E. Self-sustained oscillations of impinging free shear layers[J]. Annual Review of Fluid Mechanics, 1979, 11(1): 67-94. [15] SHANG J S, HAYES J, WURTZLER K, et al. Jet-spike bifurcation in high-speed flows[J]. AIAA Journal, 2001, 39(6): 1159-1165. [16] HUANG W. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations[J]. Journal of Zhejiang University-SCIENCE A, 2015, 16(7): 551-561. [17] AHMED M Y M, QIN N. Forebody shock control devices for drag and aero-heating reduction: A comprehensive survey with a practical perspective[J]. Progress in Aerospace Sciences, 2020, 112: 100585. [18] MAHESH K. The interaction of jets with crossflow[J]. Annual Review of Fluid Mechanics, 2013, 45(1): 379-407. [19] MENG Y S, YAN L, HUANG W, et al. Fluid-thermal coupled investigation on the combinational spike and opposing/lateral jet in hypersonic flows[J]. Acta Astronautica, 2021, 185: 264-282. [20] MENG Y S, YAN L, HUANG W, et al. Coupled investigation on drag reduction and thermal protection mechanism of a double-cone missile by the combined spike and multi-jet[J]. Aerospace Science and Technology, 2021, 115: 106840. [21] ZHU L, LI Y K, GONG L K, et al. Coupled investigation on drag reduction and thermal protection mechanism induced by a novel combinational spike and multi-jet strategy in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2019, 131: 944-964. [22] CLAREY M P, GREENDYKE R B. Three-temperature thermochemical nonequilibrium model with application to slender-body wakes[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(3): 721-737. [23] 李海燕. 高超声速高温气体流场的数值模拟[D].绵阳: 中国空气动力研究与发展中心, 2007: 20-22. LI H Y. Numerical simulation of hypersonic and high temperature gas flowfields[D].Mianyang: China Aerodynamics Research and Development Center, 2007: 20-22(in Chinese). [24] 鄢昌渝. 激光等离子体相互作用机理与大气吸气式激光推进数值计算研究[D].长沙: 国防科学技术大学, 2008: 26-27. YAN C Y. Numerical investigation on laser plasma interaction mechanism and air-breathing laser propulsion[D].Changsha: National University of Defense Technology, 2008: 26-27 (in Chinese). [25] WANG X Y, YAN C, ZHENG W L, et al. Laminar and turbulent heating predictions for Mars entry vehicles[J]. Acta Astronautica, 2016, 128: 217-228. [26] PARK C. A review of reaction rates in high temperature air: AIAA-1989-1740[R].Reston: AIAA, 1989. [27] 吴忧. 基于热化学非平衡模型的高超飞行器气动力/热研究[D].北京: 北京航空航天大学, 2020: 26-34. WU Y. Investigation of aerodynamic and aerothermal effects on hypersonic vehicles based on thermo-chemical nonequilibrium models[D].Beijing: Beihang University, 2020: 26-34 (in Chinese). [28] GNOFFO P A, GUPTA R N, SHINN J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium: NASA TP-2867[R].Washington, D.C.: NASA, 1989. [29] 李鹏, 陈坚强, 丁明松, 等. NNW-HyFLOW高超声速流动模拟软件框架设计[J]. 航空学报, 2021, 42(9): 169-185. LI P, CHEN J Q, DING M S, et al. Framework design of NNW-HyFLOW hypersonic flow simulation software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 169-185 (in Chinese). [30] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. [31] GUPTA R N, YOS J M, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-TM-101528[R].Washington, D.C.: NASA, 1989. [32] PARK J S, YOON S H, KIM C. Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids[J]. Journal of Computational Physics, 2010, 229(3): 788-812. [33] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions: AIAA-1993-0880[R].Reston: AIAA, 1993. [34] KIM S D, LEE B J, LEE H J, et al. Robust HLLC Riemann solver with weighted average flux scheme for strong shock[J]. Journal of Computational Physics, 2009, 228(20): 7634-7642. [35] BLAZEK J. Boundary conditions[M]//Computational Fluid Dynamics: Principles and Applications. Amsterdam: Elsevier, 2015: 253-281. [36] MUYLAERT J, WALPOT L, HAEUSER J, et al. Standard model testing in the European High Enthalpy Facility F4 and extrapolation to flight: AIAA-1992-3905[R].Reston: AIAA, 1992. [37] HAO J A, WANG J Y, LEE C. Numerical study of hypersonic flows over reentry configurations with different chemical nonequilibrium models[J]. Acta Astronautica, 2016, 126: 1-10. [38] 张智超, 高振勋, 蒋崇文, 等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报, 2015, 41(4): 594-600. ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterions in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 594-600 (in Chinese). [39] WANG Z, JIANG C W, GAO Z X, et al. Prediction for the separation length of two-dimensional sonic injection with high-speed crossflow[J]. AIAA Journal, 2017, 55(3): 832-847. [40] 李亚超, 阎超, 张翔, 等. 超声速横向喷流侧向控制的数值模拟[J]. 北京航空航天大学学报, 2015, 41(6): 1073-1079. LI Y C, YAN C, ZHANG X, et al. Numerical simulation of lateral control in supersonic cross jet flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1073-1079 (in Chinese). |