[1] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. [2] DOLBOW J. An extended finite element method with discontinuous enrichment for applied mechanics[D]. Evanston: Northwestern University, 1999. [3] DOLBOW J, MOS N, BELYTSCHKO T. Discontinuous enrichment in finite elements with a partition of unity method[J]. Finite Elements in Analysis and Design, 2000, 36(3-4): 235-260. [4] MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150. [5] HANSBO A, HANSBO P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(33-35): 3523-3540. [6] MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45-48): 2765-2778. [7] MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311. [8] BORDEN M J, VERHOOSEL C V, SCOTT M A, et al. A phase-field description of dynamic brittle fracture[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 217-220: 77-95. [9] MOËS N, STOLZ C, BERNARD P E, et al. A level set based model for damage growth: The thick level set approach[J]. International Journal for Numerical Methods in Engineering, 2011, 86(3): 358-380. [10] ZHANG Z Y, JIANG W, DOLBOW J E, et al. A modified moment-fitted integration scheme for X-FEM applications with history-dependent material data[J]. Computational Mechanics, 2018, 62(2): 233-252. [11] SURESH K. Generalization of the mid-element based dimensional reduction[J]. Journal of Computing and Information Science in Engineering, 2003, 3(4): 308-314. [12] SURESH K. Skeletal reduction of boundary value problems[J]. International Journal for Numerical Methods in Engineering, 2006, 66(4): 722-739. [13] CHOI H I, CHOI S W, MOON H P. Mathematical theory of medial axis transform[J]. Pacific Journal of Mathematics, 1997, 181(1): 57-88. [14] SHERBROOKE E C, PATRIKALAKIS N M, WOLTER F E. Differential and topological properties of medial axis transforms[J]. Graphical Models and Image Processing, 1996, 58(6): 574-592. [15] RABCZUK T, ZI G, GERSTENBERGER A, et al. A new crack tip element for the phantom-node method with arbitrary cohesive cracks[J]. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577-599. [16] GASTON D, NEWMAN C, HANSEN G, et al. MOOSE: a parallel computational framework for coupled systems of nonlinear equations[J]. Nuclear Engineering and Design, 2009, 239(10): 1768-1778. [17] ANNAVARAPU C, HAUTEFEUILLE M, DOLBOW J E. A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: Single interface[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 268: 417-436. [18] ANNAVARAPU C, HAUTEFEUILLE M, DOLBOW J. A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part II: Intersecting interfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 267(1): 318-341. |