[1] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. The Journal of the Royal Aeronautical Society, 1959, 63(585): 521-528. [2] JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Archive of Applied Mechanics, 1968, 37(1): 56-72. [3] RASMUSSEN M L. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(6): 537-545. [4] LE G G, MA D W, LI Z Y. Computation of hypersonic flowfields for elliptic-cone-derived waveriders[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2006, 30(3): 257-260 (in Chinese). 乐贵高, 马大为, 李自勇. 椭圆锥乘波体高超声速流场数值计算[J]. 南京理工大学学报(自然科学版), 2006, 30(3): 257-260. [5] LIU C Z, BAI P, CHEN B Y, et al. Rapid design and multi-object optimization for waverider from 3D flow[J]. Journal of Astronautics, 2016, 37(5): 535-543 (in Chinese). 刘传振, 白鹏, 陈冰雁, 等. 三维流场乘波体快速设计方法及多目标优化[J]. 宇航学报, 2016, 37(5): 535-543. [6] LOBBIA M A, SUZUKI K. Experimental investigation of a Mach 3.5 waverider designed using computational fluid dynamics[J]. AIAA Journal, 2014, 53(6): 1590-1601. [7] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock wave[C]//The First International Waverider Symposium. Maryland: University of Maryland, 1990. [8] ZHOU H, JIN Z G. Micro osculating axisymmetric flow method for 3D shock wave design under nonuniform flows[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124035 (in Chinese). 周航, 金志光. 非均匀来流下三维激波反问题的微元密切轴对称解法[J]. 航空学报, 2020, 41(12): 124035. [9] SZEMA K Y, LIU Z N, MUNIPALLI R. An efficient GUI design tool for high-speed airbreathing propulsion integration[C]//28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010. [10] ZHAO Z T, HUANG W, JIN H S, et al. Effects of Mach number discrete method on shape and aerodynamic performance of osculating cone variable Mach number waverider[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124074 (in Chinese). 赵振涛, 黄伟, 金宏盛, 等. 马赫数离散方式对吻切锥变马赫数乘波飞行器构型和气动性能的影响[J]. 航空学报, 2020, 41(12): 124074. [11] RODI P. The osculating flowfield method of waverider geometry generation[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. [12] RODI P. Geometrical relationships for osculating cones and osculating flowfield waveriders[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. [13] DUAN Y H, FAN Z L, WU W H. Generation and design methods of osculating cone waverider with constant angle of sweepback[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3023-3034 (in Chinese). 段焰辉, 范召林, 吴文华. 定后掠角密切锥乘波体的生成和设计方法[J]. 航空学报, 2016, 37(10): 3023-3034. [14] KONTOGIANNIS K, SÓBESTER A, TAYLOR N. Waverider design based on three-dimensional leading edge shapes[J]. Journal of Aircraft, 2017, 54(5): 2010-2012. [15] LI J, YI H X, WANG D, et al. Aerodynamic performance of double swept waverider based on projection method[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124703 (in Chinese). 李珺, 易怀喜, 王逗, 等. 基于投影法的双后掠乘波体气动性能[J]. 航空学报, 2021, 42(12): 124703. [16] ZHAO Z T, HUANG W, YAN B B, et al. Design and high speed aerodynamic performance analysis of vortex lift waverider with a wide-speed range[J]. Acta Astronautica, 2018, 151: 848-863. [17] ZHAO Z T, HUANG W, YAN L, et al. Low speed aerodynamic performance analysis of vortex lift waveriders with a wide-speed range[J]. Acta Astronautica, 2019, 161: 209-221. [18] LIU C Z, BAI P, CHEN B Y. Design and property advantages analysis of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120808 (in Chinese). 刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析[J]. 航空学报, 2017, 38(6): 120808. [19] LIU C Z, LIU Q, BAI P, et al. Aerodynamic shape design integrating vortex and shock effects for width-velocity-range[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121824 (in Chinese). 刘传振, 刘强, 白鹏, 等. 涡波效应宽速域气动外形设计[J]. 航空学报, 2018, 39(7): 121824. [20] TAKASHIMA N, LEWIS M J. Navier-Stokes computation of a viscous optimized waverider[J]. Journal of Spacecraft & Rockets, 1992, 31(3): 383-391. [21] GILLUM M J, LEWIS M J. Experimental results on a Mach 14 waverider with blunt leading edges[J]. Journal of Aircraft, 1997, 34(3): 296-303. [22] CHARLES COCKRELL S E, HUEBNER L, FINLEY D. Aerodynamic performance and flow-field characteristics of two waverider-derived hypersonic cruise configurations[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995. [23] LIU C Z, BAI P. Mathematical expression of geometric relationship in osculating-cone waverider design[J]. Journal of Aircraft, 2021, 58(4): 858-866. [24] TINCHER D, BURNETTA D. Hypersonic waverider test vehicle-The logical next step[C]//30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. [25] ZHANG H J, SHEN Q. Experimental investigation of leading edge bluntness effects on hypersonic two-dimensional inlet[J]. Procedia Engineering, 2015, 99: 1582-1590. [26] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. [27] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]//31 st Aerospace Sciences Meeting. Reston: AIAA, 1993. [28] KERMANI M, PLETT E. Modified entropy correction formula for the Roe scheme[C]//39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. [29] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. [30] CHEN R F, WANG Z J. Fast, block lower-upper symmetric Gauss-seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12): 2238-2245. |