[1] ROSKAM J. Airplane design[M]. Ottawa:DAR Corporation, 1985. [2] 朱自强, 吴宗成. 现代飞机设计空气动力学[M]. 北京:北京航空航天大学出版社, 2005. ZHU Z Q, WU Z C. Aerodynamics of modern aircraft design[M]. Beijing:Beihang University Press, 2005(in Chinese). [3] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1):10-25. [4] MA H D, CUI E, Drag prediction and reduction for civil transportation aircraft[J]. Mechanics in Engineering, 2007, 29(2):1-7. [5] ARCARA P C, BARTLETT D W, MCCULLERS L A. Analysis for the application of hybrid laminar flow control to a long-range subsonic transport aircraft[R]. Warrendale:SAE International, 1991. [6] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). [7] JOSLIN R D. Overview of laminar control:NASA TP-208705[R].Washington,D.C.:NASA, 1998. [8] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998(4):23-30. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998(4):23-30(in Chinese). [9] 李权, 段卓毅, 张彦军, 等. 民用飞机自然层流机翼研究进展[J]. 航空工程进展, 2013, 4(4):399-406. LI Q, DUAN Z Y, ZHANG Y J, et al. Progress in research on natural laminar wing for civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2013, 4(4):399-406(in Chinese). [10] Boeing Commerical Airplane Group. High Reynold number hybrid laminar flow control (HLFC) flight experiment(aerodynamic design):NASA/CR1999-209324[R]. Washington,D.C.:NASA,1999. [11] HORSTMANN K H. TELFONA, Contribution to laminar wing development for future transport aircraft[C]//Aeronautical Days, 2006. [12] KRISHNAN K S G, BERTRAM O, SEIBEL O. Review of hybrid laminar flow control systems[J]. Progress in Aerospace Sciences, 2017, 93:24-52. [13] BLAZEK J. Computational fluid dynamics:Principles and applications (Second Edition)[M]. Amsterdam:Elsevier, 2005. [14] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605. [15] LANGTRY R, MENTER F. Transition modeling for general CFD applications in aeronautics[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005. [16] SEWALL W G, MCGHEE R J, HAHNE D E, et al. Wind tunnel results of the high-speed NLF (1)-0213airfoil:N 90-12539[R]. Washington,D.C.:NASA,1987. [17] KULFAN B, BUSSOLETTI J. "Fundamental" parameteric geometry representations for aircraft component shapes[C]//11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2006. [18] HOLLAND J H. Adaptation in natural artificial systems:An introductory analysis with applications to biology, control, and artificial intelligence[M]. 2nd ed.Cambridge:MIT Press, 1992:1-51. [19] TAMAKI O, TOMOYUKI H, MITSUNORI M,et al. DCMOGA:Distributed cooperation model of multi-objective genetic algorithm[J]. Science& Engineering Review of Doshisha University,2001,42:129-140. [20] 艾梦琪, 段卓毅, 张健, 等. 高亚声速层流翼型转捩数值模拟及试验研究[J]. 飞行力学, 2020, 38(6):77-81, 94. AI M Q, DUAN Z Y, ZHANG J, et al. Numerical simulation and test on transition of a high subsonic laminar airfoil[J]. Flight Dynamics, 2020, 38(6):77-81, 94(in Chinese). |