[1] YAO W, CHEN X Q, LUO W C, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6):450-479. [2] ZANG T, HEMSCH M, HILBURGER M, et al. Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles:NASA/TM-2002-211462[R]. Washington, D.C.:NASA, 2002. [3] 徐明, 李建波, 彭名华, 等. 基于不确定性的旋翼转速优化直升机参数设计[J]. 航空学报, 2016, 37(7):2170-2179. XU M, LI J B, PENG M H, et al. Parameter design of helicopter with optimum speed rotor based on uncertainty optimization[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2170-2179(in Chinese). [4] NANNAPANENI S, MAHADEVAN S. Probability-space surrogate modeling for fast multidisciplinary optimization under uncertainty[J]. Reliability Engineering & System Safety, 2020, 198:106896. [5] HORA S C. Aleatory and epistemic uncertainty in probability elicitation with an example from hazardous waste management[J]. Reliability Engineering & System Safety, 1996, 54(2-3):217-223. [6] SRIVASTAVA A, SUBRAMANIYAN A K, WANG L P. Hybrid Bayesian solution to NASA langley research center multidisciplinary uncertainty quantification challenge[J]. Journal of Aerospace Information Systems, 2014, 12(1):114-139. [7] NAGEL J B, SUDRET B. A unified framework for multilevel uncertainty quantification in Bayesian inverse problems[J]. Probabilistic Engineering Mechanics, 2016, 43:68-84. [8] SONG J W, WEI P F, VALDEBENITO M, et al. Generalization of non-intrusive imprecise stochastic simulation for mixed uncertain variables[J]. Mechanical Systems and Signal Processing, 2019, 134:106316. [9] WILLIAMSON R C, DOWNS T. Probabilistic arithmetic.I.Numerical methods for calculating convolutions and dependency bounds[J]. International Journal of Approximate Reasoning, 1990, 4(2):89-158. [10] SIMON C, BICKING F. Hybrid computation of uncertainty in reliability analysis with p-box and evidential networks[J]. Reliability Engineering & System Safety, 2017, 167:629-638. [11] KARANKI D R, KUSHWAHA H S, VERMA A K, et al. Uncertainty analysis based on probability bounds (p-box) approach in probabilistic safety assessment[J]. Risk Analysis, 2009, 29(5):662-675. [12] SUN S A, FU G T, DJORDJEVIĆ S, et al. Separating aleatory and epistemic uncertainties:Probabilistic sewer flooding evaluation using probability box[J]. Journal of Hydrology, 2012, 420-421:360-372. [13] 黄心, 王清心, 丁家满. 基于概率盒理论的电网规划方案中指标不确定性建模[J]. 信息与控制, 2016, 45(3):272-277. HUANG X, WANG Q X, DING J M. Index uncertainty modeling in grid planning based on probability box theory[J]. Information and Control, 2016, 45(3):272-277(in Chinese). [14] BENNER P, SORENSEN D C, MEHRMANN V. Dimension reduction of large-scale systems[M]. Berlin, Heidelberg:Springer, 2005. [15] LI L, WAN H, GAO W J, et al. Reliability based multidisciplinary design optimization of cooling turbine blade considering uncertainty data statistics[J]. Structural and Multidisciplinary Optimization, 2019, 59(2):659-673. [16] CHU J, ZHANG C, FU G, et al. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction[J]. Hydrology and Earth System Sciences, 2015, 19(8):3557-3570. [17] CARREIRA-PERPINÀN M A. A review of dimension reduction techniques:CS-96-09[R]. Sheffield:University of Sheffield, 1997. [18] BRIGGS A, SCULPHER M, BUXTON M. Uncertainty in the economic evaluation of health care technologies:The role of sensitivity analysis[J]. Health Economics, 1994, 3(2):95-104. [19] 邬晓敬, 张伟伟, 宋述芳, 等. 翼型跨声速气动特性的不确定性及全局灵敏度分析[J]. 力学学报, 2015, 47(4):587-595. WU X J, ZHANG W W, SONG S F, et al. Uncertainty quantification and global sensitivity analysis of transonic aerodynamics about airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4):587-595(in Chinese). [20] 冯凯旋, 吕震宙, 蒋献. 基于偏导数的全局灵敏度指标的高效求解方法[J]. 航空学报, 2018, 39(3):221699. FENG K X, LYU Z Z, JIANG X. Efficient algorithm for estimating derivative-based global sensitivity index[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):221699(in Chinese). [21] BORGONOVO E, PLISCHKE E. Sensitivity analysis:A review of recent advances[J]. European Journal of Operational Research, 2016, 248(3):869-887. [22] ZHOU C C, ZHANG Z, LIU F C, et al. Sensitivity analysis for probabilistic anti-resonance design of aeronautical hydraulic pipelines[J]. Chinese Journal of Aeronautics, 2019, 32(4):948-953. [23] LIANG C, MAHADEVAN S. Bayesian sensitivity analysis and uncertainty integration for robust optimization[J]. Journal of Aerospace Information Systems,2014, 12(1):189-203. [24] OBERGUGGENBERGER M, KING J, SCHMELZER B. Classical and imprecise probability methods for sensitivity analysis in engineering:A case study[J]. International Journal of Approximate Reasoning, 2009, 50(4):680-693. [25] FERSON S, TROY TUCKER W. Sensitivity analysis using probability bounding[J]. Reliability Engineering & System Safety, 2006, 91(10-11):1435-1442. [26] SONG J W, LU Z Z, WEI P F, et al. Global sensitivity analysis for model with random inputs characterized by probability-box[J]. Proceedings of the Institution of Mechanical Engineers, Part O:Journal of Risk and Reliability, 2015, 229(3):237-253. [27] BI S F, BROGGI M, WEI P F, et al. The Bhattacharyya distance:Enriching the P-box in stochastic sensitivity analysis[J]. Mechanical Systems and Signal Processing, 2019, 129:265-281. [28] PEDRONI N, ZIO E. Hybrid uncertainty and sensitivity analysis of the model of a twin-jet aircraft[J]. Journal of Aerospace Information Systems, 2015, 12(1):73-96. [29] FODOR I K. A survey of dimension reduction techniques[DB/OL]. arXiv preprint:1403.2877, 2002. [30] WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics andIntelligent Laboratory Systems, 1987, 2(1-3):37-52. [31] MA Y Y, ZHU L P. A review on dimension reduction[J]. International Statistical Review, 2013, 81(1):134-150. [32] 陈鑫, 刘莉, 岳振江. 基于本征正交分解和代理模型的高超声速气动热模型降阶研究[J]. 航空学报, 2015, 36(2):462-472. CHEN X, LIU L,YUE Z J. Reduced order aerothermodynamic modeling research for hypersonic vehicles based on proper orthogonal decomposition and surrogate method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):462-472(in Chinese). [33] JACKSON J E. A user's guide to principal components[M]. New York:John Wiley & Sons, 1991:26-62. [34] CONSTANTINE P G, DOW E, WANG Q Q. Active subspace methods in theory and practice:Applications to kriging surfaces[J]. SIAM Journal on Scientific Computing, 2014, 36(4):A1500-A1524. [35] CONSTANTINE P G. Active subspaces:Emerging ideas for dimension reduction in parameter studies[M]. Philadelphia:SIAM, 2015:21-88. [36] LUKACZYK T W, CONSTANTINE P, PALACIOS F, et al. Active subspaces for shape optimization[C]//10th AIAAMultidisciplinary Design Optimization Conference. Reston:AIAA, 2014:1171. [37] JEFFERSON J L, GILBERT J M, CONSTANTINE P G, et al. Active subspaces for sensitivity analysis and dimension reduction of an integrated hydrologic model[J]. Computers & Geosciences, 2015, 83:127-138. [38] HU X Z, CHEN X Q, LATTARULO V, et al. Multidisciplinary optimization under high-dimensional uncertainty for small satellite system design[J]. AIAA Journal, 2016, 54(5):1732-1741. [39] JOLLIFFE I T. Discarding variables in a principal component analysis. I:Artificial data[J]. Applied Statistics, 1972, 21(2):160. [40] CRESPO L G, KENNY S P, GIESY D P. The NASA langley multidisciplinary uncertainty quantification challenge[C]//16th AIAA Non-Deterministic Approaches Conference. Reston:AIAA, 2014 |