[1] MONTALVO C, COSTELLO M. Avoiding lockout instability for towed parafoil systems[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(5):985-995. [2] TANAKA M, TANAKA K, WANG H. Practical model construction and stable control of an unmanned aerial vehicle with a parafoil-type wing[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 49(6):1291-1297. [3] WARD M, MARK C. Adaptive glide slope control for parafoil and payload aircraft[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(4):1019-1034. [4] DUNKER S, HUISKEN J, MONTAGUE D, et al. Guided Parafoil High Altitude Research (GPHAR) flight at 57,122 ft[C]//AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2015. [5] CACAN M, COSTELLO M, SCHEUERMANN E. Global positioning system denied navigation of autonomous parafoil systems using beacon measurements from a single location[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(4):041004. [6] DEK C, OVERKAMP J, TOETER A, et al. A recovery system for the key components of the first stage of a heavy launch vehicle[J]. Aerospace Science and Technology, 2020, 100:105778. [7] SUN H, SUN Q, LUO S, et al. In-flight compound homing methodology of parafoil delivery systems under multiple constraints[J]. Aerospace Science and Technology, 2018, 79:85-104. [8] ZHANG L, GAO H, CHEN Z, et al. Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method[J]. Nonlinear Dynamics, 2013, 72(1-2):1-8. [9] FOWLER L, ROGERS J. Bezier curve path planning for parafoil terminal guidance[J]. Journal of Aerospace Information Systems, 2014, 11(5):300-315. [10] SLEGERS N, BROWN A, ROGERS J. Experimental investigation of stochastic parafoil guidance using a graphics processing unit[J]. Control Engineering Practice, 2015, 36:27-38. [11] ROGERS J, SLEGERS N. Robust parafoil terminal guidance using massively parallel processing[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(5):1336-1345. [12] CHIEL B, DEVER C. Autonomous parafoil guidance in high winds[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(5):963-969. [13] 胡文治, 陈建平, 张红英, 等.翼伞系统分段归航轨迹的优化设计[J].航空计算技术,2017,47(6):55-59. HU W Z, CHEN J P, ZHANG H Y, et al. Design and optimization in multiphase homing trajectory of parafoil system[J]. Aeronautical Computing Technique, 2017, 47(6):55-59(in Chinese). [14] CHEN Q, SUN Y, ZHAO M, et al. A virtual structure formation guidance strategy for multi-parafoil systems[J]. IEEE Access, 2019, 7:123592-123603. [15] 陈奇, 赵敏, 赵志豪, 等. 多自主翼伞系统建模及其集结控制[J]. 航空学报, 2016, 37(10):3121-3130. CHEN Q, ZHAO M, ZHAO Z H, et al. Multiple autonomous parafoils system modeling and rendezvous control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3121-3130(in Chinese). [16] LI C, TENG H, ZHU Y, et al. Design and simulation for large parafoil fix line object homing algorithm[J]. Journal of Central South University, 2016, 23(9):2276-2283. [17] 梁海燕, 任志刚, 许超, 等. 翼伞系统最优归航轨迹设计的敏感度分析方法[J]. 控制理论与应用, 2015, 32(8):1003-1011. LIANG H Y, REN Z G, XU C, et al. Optimal homing trajectory design for parafoil systems using sensitivity analysis approach[J]. Control Theory & Applications, 2015, 32(8):1003-1011(in Chinese). [18] NIE S, CAO Y, WU Z. Numerical simulation of parafoil inflation via a Robin-Neumann transmission-based approach[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(4):797-810. [19] YU L, HAN C, ZHAN Y, et al. Study of parachute inflation process using fluid-structure interaction method[J]. Chinese Journal of Aeronautics, 2014, 27(2):272-279. [20] DEVALLA V, JAISWAL R, MONDAL A, et al. Estimation of lateral directional aerodynamic derivatives from flight data of unmanned powered parafoil aerial vehicle[C]//In 2018 Atmospheric Flight Mechanics Conference, 2018:3156. [21] YANG H, SONG L, CHEN W. Research on parafoil stability using a rapid estimate model[J]. Chinese Journal of Aeronautics, 2017, 30(5):1670-1680. [22] LI B, HE Y, HAN J, et al. A new modeling scheme for powered parafoil unmanned aerial vehicle platforms:Theory and experiments[J]. Chinese Journal of Aeronautics, 2019, 32(11):2466-2479. [23] ZHANG Z, ZHAO Z, FU Y. Dynamics analysis and simulation of six DOF parafoil system[J]. Cluster Computing, 2019, 22(5):12669-12680. [24] LV F K, HE W L, ZHAO L G. An improved nonlinear multibody dynamic model for a parafoil-UAV system[J]. IEEE Access, 2019, 7:139994-140009. [25] YANG H, SONG L, CHEN W F. Research on parafoil stability using a rapid estimate model[J]. Chinese Journal of Aeronautics, 2017, 30(5):1670-1680. [26] 唐小军, 尉建利, 陈凯. 求解最优控制问题的Chebyshev-Gauss伪谱法[J]. 自动化学报, 2015, 41(10):1778-1787. TANG X J, WEI J L, CHEN K. A Chebyshev-Gauss pseudo spectral method for solving optimal control problems[J]. Acta Automatica Sinica, 2015, 41(10):1778-1787(in Chinese). [27] CHU X, ZHANG J, LU S, et al. Optimised collision avoidance for an ultra-close rendezvous with a failed satellite based on the Gauss pseudospectral method[J]. Acta Astronautica, 2016, 128:363-376. [28] YANG S, TAO C, HAO X, et al. Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method[J]. Aerospace Science and Technology, 2017, 67:88-95. [29] 刘平, 胡云卿, 廖俊, 等. 基于两阶段自适应Gauss配点重构伪谱法的电力机车优化操纵[J]. 自动化学报, 2019, 45(12):2344-2354. LIU P, HU Y Q, LIAO J, et al. Optimization operation of electric locomotive based on two-stage adaptive Gauss re-collocation pseudospectral approach[J]. Acta Automatica Sinica, 2019, 45(12):2344-2354(in Chinese). [30] 蔺君,何英姿,黄盘兴.基于改进分段Gauss伪谱法的带推力高超声速飞行器再入轨迹规划[J].控制理论与应用,2019,36(10):1662-1671. LIN J, HE Y Z, HUANG P X. Powered hypersonic vehicle reentry trajectory optimization based on improved multi-phase Gauss spectral method[J]. Control Theory and Applications, 2019, 36(10):1662-1671(in Chinese). |