[1] 刘维伟, 李杰光, 赵明, 等. 航空发动机薄壁叶片加工变形误差补偿技术研究[J]. 机械设计与制造, 2009(10):175-177. LIU W W, LI J G, ZHAO M, et al. Research on the compensation of deformation error in NC machining of thin-walled blades[J]. Machinery Design & Manufacture, 2009(10):175-177(in Chinese). [2] 蔡景, 李鑫, 肖罗椿, 等. 竞争风险模型下变环境的发动机叶片可靠性分析[J]. 航空动力学报, 2017, 32(2):398-404. CAI J, LI X, XIAO L C, et al. Reliability analysis of engine blade under varied environment with competing model[J]. Journal of Aerospace Power, 2017, 32(2):398-404(in Chinese). [3] BALAN C, TABAKOFF W. Axial flow compressor performance deterioration[C]//20th Joint Propulsion Conference. 1984:1208. [4] ROBERTS W B. Axial compressor performance restoration by blade profile control[C]//ASME 1984 International Gas Turbine Conference and Exhibit. New York:ASME, 1984:V001T01A063. [5] SUDER K L, CHIMA R V, STRAZISAR A J. The effect of adding roughness and thickness to a transonic axial compressor rotor[J]. Journal of Turbomachinery, 1995, 117(4):491-505. [6] ELMSTROM M E, MILLSAPS K T, HOBSON G V, et al. Impact of nonuniform leading edge coatings on the aerodynamic performance of compressor airfoils[J]. Journal of Turbomachinery, 2011, 133(4):041004. [7] GARZON V, DARMOFAL D. Using computational fluid dynamics in probabilistic engineering design[C]//15th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2001:2526. [8] GARZON V E. Probabilistic aerothermal design of compressor airfoils[D]. Massachusetts:Massachusetts Institute of Technology, 2003:27-44. [9] GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[C]//ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. New York:ASME, 2003:1199-1213. [10] SCHNELL R, LENGYEL-KAMPMANN T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics[J]. Journal of Turbomachinery, 2014, 136(9):091005. [11] LANGE A, VOIGT M, VOGELER K, et al. Principal component analysis on 3D scanned compressor blades for probabilistic CFD simulation[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural dynamics and Materials Conference. Reston:AIAA, 2012:1762. [12] LUO J Q, LIU F. Statistical evaluation of performance impact of manufacturing variability by an adjoint method[J]. Aerospace Science and Technology, 2018, 77:471-484. [13] WUNSCH D, HIRSCH C, NIGRO R, et al. Quantification of combined operational and geometrical uncertainties in turbo-machinery design[C]//ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. New York:ASME, 2015:V02CT45A018. [14] DOW E A, WANG Q. Simultaneous robust design and tolerancing of compressor blades[C]//ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. New York:ASME, 2014:V02BT45A007. [15] GOODHAND M N, MILLER R J, LUNG H W. The sensitivity of 2D compressor incidence range to in-service geometric variation[C]//ASME Turbo Expo 2012:Turbine Technical Conference and Exposition. New York:ASME, 2012:159-170. [16] GOODHAND M N, MILLER R J, LUNG H W. The impact of geometric variation on compressor two-dimensional incidence range[J]. Journal of Turbomachinery, 2015, 137(2):021007. [17] 张伟昊, 邹正平, 李维, 等. 叶型偏差对涡轮性能影响的非定常数值模拟研究[J]. 航空学报, 2010, 31(11):2130-2138. ZHANG W H, ZOU Z P, LI W, et al. Unsteady numerical simulation investigation of effect of blade profile deviation on turbine performance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2130-2138(in Chinese). [18] 张伟昊, 邹正平, 刘火星, 等. 叶型偏差对整机环境中涡轮性能的影响[J]. 工程热物理学报, 2010, 31(11):1830-1834. ZHANG W H, ZOU Z P, LIU H X, et al, Effect of profile deviation on turbine performance in whole engine environment[J]. Journal of Engineering Thermophysics, 2010, 31(11):1830-1834(in Chinese). [19] 高丽敏, 蔡宇桐, 曾瑞慧, 等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术, 2017, 38(3):525-531. GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology, 2017, 38(3):525-531(in Chinese). [20] 蔡宇桐, 高丽敏, 马驰, 等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报,2017,38(3):490-497. CAI Y T, GAO L M, MA C, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics, 2017, 38(3):490-497(in Chinese). [21] 程超, 吴宝海, 郑海, 等. 叶片加工误差对压气机性能的影响[J]. 航空学报, 2020,41(2):623237. CHENG C, WU B H, ZHENG H, et al. Effect of blade machining errors on compressor performance[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):623237(in Chinese). [22] GAO L M, MA C, CAI Y T. A robust blade design method based on non-intrusive polynomial chaos considering profile error[J]. Journal of Thermal Science, 2019, 28(5):875-885. [23] MA C, GAO L, CAI Y, et al. Robust optimization design of compressor blade considering machining error[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition. New York:ASME, 2017. [24] 罗佳奇, 朱亚路, 刘锋. 基于伴随方法的叶片加工偏差气动灵敏度分析[J]. 工程热物理学报, 2017, 38(3):498-504. LUO J Q, ZHU Y L, LIU F. Aerodynamic sensitivity analysis for manufacturing variations of a turbine blade by an adjoint method[J]. Journal of Engineering Thermophysics, 2017, 38(3):498-504(in Chinese). [25] HE X Q, ZHENG X. Performance improvement of transonic centrifugal compressors by optimization of complex three-dimensional features[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(14):2723-2738. [26] 中国航空工业总公司六二四所. 叶片叶型的标注、公差与叶身表面粗糙度:HB 5647-98[S]. 北京:中国航空工业总公司, 1999. CGTE. Blade labeling, tolerance and surface roughness:HB 5647-98[S]. Beijing:Aviation Industry Corporation of China, 1999(in Chinese). [27] 胡春春. 统计学[M]. 北京:北京理工大学出版社,2017:109. HU C C. Statistics[M]. Beijing:Beijing Institute of Technology Press, 2017:109(in Chinese). [28] LIND D A, MARCHAL W G, WATHEN S A. Basic statistics for business & economics[M]. Boston:McGraw-Hill/Irwin, 2011:82. [29] GOODHAND M N, MILLER R J. Compressor leading edge spikes:A new performance criterion[J]. Journal of Turbomachinery, 2011, 133(2):021006. [30] KÜSTERS B, SCHREIBER H A, KÖLLER U D, et al. Development of advanced compressor airfoils for heavy-duty gas turbines:Part Ⅱ-Experimental and theoretical analysis[C]//ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. New York:ASME, 1999:V001T03A022. [31] TAIN L, CUMPSTY N A. Compressor blade leading edges in subsonic compressible flow[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2000, 214(1):221-242. [32] 刘宝杰, 袁春香, 于贤君. 前缘形状对可控扩散叶型性能影响[J]. 推进技术,2013,34(7):890-897. LIU B J, YUAN C X, YU X J. Effects of leading-edge geometry on aerodynamic performance in controlled diffusion airfoil[J]. Journal of Propulsion Technology, 2013, 34(7):890-897(in Chinese). [33] 刘宝杰, 邓倩雯, 于贤君. 叶型任意位置损失提取方法及其应用[J]. 工程热物理学报,2018,39(1):68-75. LIU B J, DENG Q W, YU X J. Method for extracting the boundary layer loss in any position of cascade and its application[J]. Journal of Engineering Thermophysics, 2018, 39(1):68-75(in Chinese). [34] GIEBMANNS A, SCHNELL R, STEINERT W, et al. Analyzing and optimizing geometrically degraded transonic fan blades by means of 2D and 3D simulations and cascade measurements[C]//ASME Turbo Expo 2012:Turbine Technical Conference and Exposition. New York:ASME, 2012:279-288. [35] 刘宝杰, 徐晓斌, 于贤君, 等. CDA叶型前缘流动的实验和数值研究[J]. 工程热物理学报, 2019, 40(8):1767-1774. LIU B J, XU X B, YU X J, et al. Experimental and numerical investigation on the flow near the leading-edge of controlled diffusion airfoil[J]. Journal of Engineering Thermophysics, 2019, 40(8):1767-1774(in Chinese). [36] 于贤君, 庞健, 刘宝杰. 低速模拟在叶型加工偏差影响研究的应用[J]. 工程热物理学报,2018,39(7):1436-1446. YU X J, PANG J, LIU B J. The application of low-speed simulation in researching the impact of blades manufacturing deviation on aerodynamic performance[J]. Journal of Engineering Thermophysics, 2018, 39(7):1436-1446(in Chinese). |