[1] EINICKE G A, WHITE L B. Robust extended Kalman filtering[J]. IEEE Transactions on Signal Processing, 1999, 47(9):2596-2599. [2] BELL B M, CATHEY F W. The iterated Kalman filter update as a Gauss-Newton method[J]. IEEE Transactions on Automatic Control, 1993, 38(2):294-297. [3] HU J, WANG Z, GAO H, et al. Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements[J]. Automatica, 2012, 48:2007-2015. [4] HU X, BAO M, ZHANG X, et al. Generalized iterated Kalman filter and its performance evaluation[J]. IEEE Transaction on Signal Processing, 2015, 63:3204-3217. [5] JULIER S J, UHLMANN J K. A new extension of the Kalman filter to nonlinear systems[C]//Proceedings of Spie, 1997:182-193. [6] Wan E A, VAN DER MERWE R.The unscented Kalman filter for nonlinear estimation[C]//Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium. Piscataway:IEEE Press, 2000:153-158. [7] JULIER S J,UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3):401-422. [8] GUSTAFSSON F,HENDEBY G. Some relations between extended and unscented Kalman filters[J]. IEEE Transaction on Signal Processing, 2012,60:545-555. [9] ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transaction on Automatic Control, 2009,54:1254-1269. [10] ARASARATNAM I, HAYKIN S, HURD T R. Cubature Kalman filtering for continuous-discrete systems:Theory and simulations[J]. IEEE Transaction on Signal Processing, 2010,58:4977-4933. [11] MERWE R V D,WAN E A. Sigma-point Kalman filters for integrated navigation[C]//60th Annual Meeting of the Institute of Navigation, 2004:641-645. [12] 杨春玲,刘国岁,倪晋麟.基于转换坐标卡尔曼滤波算法的雷达目标跟踪[J].现代雷达,1988, 20(5):48-54. YANG C L, LIU G S, NI J L. Radar target tracking based on transformed coordinate Kalman filter algorithm[J].Modern Radar, 1988, 20(5):48-54(in Chinese). [13] LERRO D, BARSHALOM Y. Tracking with debiased consistent converted measurement vs. EKF[J]. IEEE Transactions on Aerospace and Electronic systems, 1993,29(3):1015-1022. [14] SONG X,ZHOU Y,BARSHALOM Y. Unbiased converted measurement for tracking[J]. IEEE Transactions on Aerospace and Electronic systems, 1998,34(3):1023-1027. [15] GORDON N J,SALMOND D J,SMITH A F. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[C]//IEEE Proceedings F-Radar and Signal Processing, 1993,140:107-113. [16] DOUCET A,GODSILL S,ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000,10(3):197-208. [17] CAPPE O,GODSILL S J,MOULINES E. An overview of existing methods and recent advances in sequential Monte Carlo[J]. Proceeding of the IEEE, 2007,95:899-924. [18] BEAL M J. Variational algorithms for approximate Bayesian inference[D].Cambridge:Cambridge University,2003. [19] SMIDL V,QUINN A. Variational Bayesian filtering[J]. IEEE Transactions on Signal Processing, 2008,56(10):5020-5030. [20] FRIGOLA R,CHEN Y,RASMUSSEN C. Varoational Gaussian process state-space models[C]//Advances in Neural Information Processing Systems, 2014:3680-3688. [21] AIT-E1-FQUIH B,HOTEIT I. A variational Bayesian multiple particle filtering scheme for large-dimensional systems[J]. IEEE Transactions on Signal Processing, 2016,64(20):5409-5422. [22] GULTEKIN S,PAISLEY J. Nonlinear Kalman filtering with divergence minimization[J]. IEEE Transactions on Signal Processing, 2017:65,6319-6331. [23] HU Y M,WANG X Z,LAN H,et al. An iterative nonlinear filter using variational bayesian optimization[J]. Sensors, 2018,18(12):4222. [24] TSENG P. An analysis of the EM algorithm and entropy-like proximal point methods[J]. Mathematics of Operations Research, 2004, 29:27-44. |