[1] |
张远龙. 基于三维剖面的滑翔飞行器弹道规划与制导方法研究[D]. 长沙:国防科技大学, 2018:1-11. ZHANG Y L. Research on entry trajectory generation for hypersonic glide vehicles based on three-dimensional profile[D]. Changsha:National University of Defense Technology, 2018:1-11(in Chinese).
|
[2] |
雍恩米, 钱炜褀, 何开锋. 基于雷达跟踪仿真的滑翔式再入弹道突防性能分析[J]. 宇航学报, 2012, 33(10):1370-1376. YONG E M, QIAN W Q, HE K F. Penetration ability analysis for glide reentry trajectory based on radar tracking[J]. Journal of Astronautics, 2012, 33(10):1370-1376(in Chinese).
|
[3] |
ZHANG K, XIONG J J, FU T T. Coupled dynamic model of state estimation for hypersonic glide vehicle[J]. Journal of System Engineering and Electronics, 2018, 29(6):1284-1292.
|
[4] |
LI X R, JILKOV V P. Survey of maneuvering target tracking. Part I:Dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4):1333-1364.
|
[5] |
吴楠, 陈磊. 高超声速滑翔再入飞行器弹道估计的自适应卡尔曼滤波[J]. 航空学报, 2013, 34(8):1960-1971. WU N, CHEN L. Adaptive Kalman filtering for trajectory estimation of hypersonic glide reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1960-1971(in Chinese).
|
[6] |
李广华. 高超声速滑翔飞行器运动特性分析及弹道跟踪预报方法研究[D]. 长沙:国防科学技术大学, 2016:71-99. LI G H. Motion characteristics analysis and trajectory prediction for hypersonic glide vehicles[D]. Changsha:National University of Defense Technology, 2016:71-99(in Chinese).
|
[7] |
张凯, 熊家军, 韩春耀, 等. 一种基于气动力模型的高超声速滑翔目标跟踪算法[J]. 宇航学报, 2017, 38(2):123-130. ZHANG K, XIONG J J, HAN C Y, et al. A tracking algorithm of hypersonic glide reentry vehicle via aerodynamic model[J]. Journal of Astronautics, 2017, 38(2):123-130(in Chinese).
|
[8] |
王国宏, 李俊杰, 张翔宇, 等. 临近空间高超声速滑跃式机动目标的跟踪模型[J]. 航空学报, 2015, 36(7):2400-2410. WANG G H, LI J J, ZHANG X Y, et al. A tracking model for near space hypersonic slippage leap maneuvering target[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2400-2410(in Chinese).
|
[9] |
李凡, 熊家军. 临近空间高超声速跳跃滑翔式目标自适应跟踪模型[J]. 航空学报, 2018, 39(12):322355. LI F, XIONG J J. Adaptive tracking model for near space hypersonic jumping gliding target[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):322355(in Chinese).
|
[10] |
张凯, 熊家军, 付婷婷, 等. 高超声速滑翔导弹气动参数自适应跟踪建模[J]. 国防科技大学学报, 2019, 41(1):101-107. ZHANG K, XIONG J J, FU T T, et al. Aerodynamic parametric modeling of hypersonic gliding missile for adaptive tracking[J]. Journal of National University of Defense Technology, 2019, 41(1):101-107(in Chinese).
|
[11] |
肖楚晗, 李炯, 雷虎民, 等. 基于AVSIMM算法的高超声速再入滑翔目标跟踪[J]. 北京航空航天大学学报, 2019, 45(2):413-421. XIAO C H, LI J, LEI H M, et al. Hypersonic non-powered reentry gliding target tracking based on AVSIMM algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2):413-421(in Chinese).
|
[12] |
何睿智. 高超声速助推滑翔飞行器全程弹道规划方法研究[D]. 长沙:国防科技大学, 2017:35-49. HE R Z. Study of all-course trajectory planning approach for hypersonic boost-glide vehicles[D]. Changsha:National University of Defense Technology, 2017:35-49(in Chinese).
|
[13] |
MEHRA R K. Approaches to adaptive filtering[J]. IEEE Transactions on Automatic Control, 1972, 17(5):693-698.
|
[14] |
刘畅, 杨锁昌, 汪连栋, 等. 基于自适应强跟踪CQKF的目标跟踪算法[J]. 北京航空航天大学学报, 2018, 44(5):982-990. LIU C, YANG S C, WANG L D, et al. Target tracking algorithm based on adaptive strong tracking CQKF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5):982-990(in Chinese).
|
[15] |
WANG N, LI L Y, WANG Q. Adaptive UKF-based parameter estimation for Bouc-Wen model of magnetorheological and elastomer materials[J]. Journal of Aerospace Engineering, 2019, 32(1):0401830.
|
[16] |
YUAN Y X, GAO W G. An optimal adaptive Kalman filter[J]. Journal of Geodesy, 2006, 80(4):177-183.
|
[17] |
HUANG Y L, ZHANG Y G, WU Z M, et al. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices[J]. IEEE Transactions on Automatic Control, 2018, 63(2):594-601.
|
[18] |
ZHOU D H, FRANK P M. Strong tracking filtering of nonlinear time-varying stochastic systems with coloured noise:Application to parameter estimation and empirical robustness analysis[J]. International Journal of Control, 1996, 65(2):295-307.
|
[19] |
WANG Y D, SUN S M, LI L. Adaptively robust unscented Kalman filter for tracking a maneuvering vehicle[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(5):1696-1701.
|
[20] |
崔乃刚, 张龙, 王小刚, 等. 自适应高阶容积卡尔曼滤波在目标跟踪中的应用[J]. 航空学报, 2015, 36(12):3885-3895. CUI N G, ZHANG L, WANG X G, et al. Application of adaptive high-degree cubature Kalman filter in target tracking[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3885-3895(in Chinese).
|
[21] |
JIANG Y Z, MA P B, BAOYIN H X. Residual-normalized strong tracking filter for tracking a noncooperative maneuvering spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(10):2304-2309.
|
[22] |
ZHANG H W, XIE J W, GE J A, et al. Strong tracking SCKF based on adaptive CS model for manoeuvring aircraft tracking[J]. IET Radar, Sonar & Navigation, 2018, 12(7):742-749.
|
[23] |
蒋冬婷, 宁静, 万洪容. 基于似然函数的自适应Singer模型滤波算法[J]. 西南师范大学学报(自然科学版), 2019, 44(1):89-94. JIANG D T, NING J, WAN H R. An adaptive Singer model filter based on likelihood function[J]. Journal of Southwest China Normal University (Natural Science Edition), 2019, 44(1):89-94(in Chinese).
|
[24] |
LI X R, JILKOV V P. Survey of maneuvering target tracking. part Ⅱ:Motion models of ballistic and space targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1):96-119.
|
[25] |
SINGER R A. Estimating optimal tracking filter performance for manned maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, 6(4):473-483.
|
[26] |
赵琳. 非线性系统滤波理论[M]. 北京:国防工业出版社, 2012:52-134. ZHAO L. Nonlinear system filtering theory[M]. Beijing:National Defense Industry Press, 2012:52-134(in Chinese).
|
[27] |
ZHOU H R, KUMAR K S P. A "current" statistical model and adaptive algorithm for estimating maneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(5):596-602.
|
[28] |
LI X R, JILKOV V P. Survey of maneuvering target tracking. part V:Multiple-model methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4):1255-1321.
|