[1] 郭运韬, 朱衍波, 黄智刚. 民用飞机航迹预测关键技术研究[J]. 中国民航大学学报, 2007, 25(1):20-24. GUO Y T, ZHU Y B, HUANG Z G. Study on key trajectory prediction techniques of civil aviation aircraft[J]. Joural of Civil Aviation University of China, 2007, 25(1):20-24(in Chinese). [2] WILSON R C, WHITLEY T D, ESTKOWSKI R. Trajectory prediction:USA, US20060224318[P]. 2006. [3] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM:Human trajectory prediction in crowded spaces[C]//Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2016:961-971. [4] 邸忆, 顾晓辉, 龙飞. 基于灰色残差修正理论的目标航迹预测方法[J]. 兵工学报, 2017, 38(3):454-459. DI Y, GU X H, LONG F. Target track prediction method based on grey residual modification theory[J]. Acta Armamentarii, 2017, 38(3):454-459(in Chinese). [5] 谭伟, 陆百川, 黄美灵. 神经网络结合遗传算法用于航迹预测[J]. 重庆交通大学学报(自然科学版), 2010, 29(1):147-150. TAN W, LU B C, HUANG M L. Track prediction based on neural networks and genetic algorithm[J]. Journal of Chongqing Jiao Tong University(Natural Science), 2010, 29(1):147-150(in Chinese). [6] 钱夔, 周颖, 杨柳静, 等. 基于BP神经网络的空中目标航迹预测模型[J]. 指挥信息系统与技术, 2017, 8(3):54-58. QIAN K, ZHOU Y, YANG L J, et al. Aircraft target track prediction model based on BP neural network[J]. Command Information System and Technology, 2017, 8(3):54-58(in Chinese). [7] FANG W, ZHENG L. Rapid and robust initialization for monocular visual inertial navigation within multi-state Kalman filter[J]. Chinese Journal of Aeronautics, 2018, 31(1):148-160. [8] 赵洲, 黄攀峰, 陈路. 一种融合卡尔曼滤波的改进时空上下文跟踪算法[J]. 航空学报, 2017, 38(2):269-279. ZHAO Z, HAUNG P F, CHEN L. A tracking algorithm of improved spatio-temporal context with Kalmans filter[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):269-279(in Chinese). [9] LU Z Y, BA B, WANG J H, et al. A direct position determination method with combined TDOA and FDOA based on particle filter[J]. Chinese Journal of Aeronautics, 2018, 31(1):161-168. [10] HAN H Z, WANG J, DU M Y. GPS/BDS/INS tightly coupled integration accuracy improvement using an improved adaptive interacting multiple model with classified measurement update[J]. Chinese Journal of Aeronautics, 2018, 31(3):556-566. [11] 翟岱亮, 雷虎民, 李炯, 等. 基于自适应IMM的高超声速飞行器轨迹预测[J]. 航空学报, 2016, 37(11):3466-3475. ZHAI D L, LEI H M, LI J. Trajectory prediction of hypersonic vehicle based on adaptive IMM[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3466-3475(in Chinese). [12] 张翔宇, 王国宏, 李俊杰, 等. 临近空间高超声速滑跃式轨迹目标跟踪技术[J]. 航空学报, 2015, 36(6):1983-1994. ZHANG X Y, WANG G H, LI J J, et al. Tracking of hypersonic sliding target in near-space[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1983-1994(in Chinese). [13] 吴楠, 陈磊. 高超声速滑翔再入飞行器弹道估计的自适应卡尔曼滤波[J]. 航空学报, 2013, 34(8):1960-1971. WU N, CHEN L. Adaptive Kalman filtering for trajectory estimation of hypersonic glide reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1960-1971(in Chinese). [14] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. Computer Science, 2014(6):1-4. [15] MAO J, XU W, YANG Y, et al. Deep captioning with multimodal recurrent neural networks(m-RNN)[J]. Eprint Arxiv, 2014:1-15. [16] CHEN S H, HWANG S H, WANG Y R. An RNN-based prosodic information synthesizer for Mandarin text-to-speech[J]. IEEE Transactions on Speech & Audio Processing, 1998, 6(3):226-239. [17] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436. [18] SCHMIDHUBER J R. Deep learning in neural networks[M]. Amsterdam:Elsevier Science Ltd., 2015. [19] SCHMIDHUBER J R. Deep learning in neural networks:An overview[J]. Neural Netw, 2015, 61:85-117. [20] TORRES J F, TRONCOSO A, KOPRINSKA I, et al. Deep learning for big data time series forecasting applied to solar power[C]//International Joint Conference SOCO'18-CISIS'18-ICEUTE'18. Berlin:Springer, 2019. [21] CHEN S, WEN J, ZHANG R. GRU-RNN based question answering over knowledge base[C]//Knowledge Graph and Semantic Computing:Semantic, Knowledge, and Linked Big Data. Berlin:Springer, 2016:80-91. |