[1] Chen J S, Li T Q, Bian J M, et al. Spacesuit engineering[M]. Beijing: National Defense Industry Press, 2002: 1-23 (in Chinese). 陈景山, 李潭秋, 边晋梅, 等. 航天服工程[M]. 北京: 国防工业出版社, 2002: 1-23.
[2] Li T Q. Foreign information of manned space flight medico-engineering key technology monographic study. First episode: EVA spacesuit system[M]. Beijing: Institute of Space Medico-Engineering, 2001: 25-37 (in Chinese). 李潭秋. 国外中长期载人航天医学工程关键技术信息研究专题资料: 第一集 出舱航天服及其系统[M]. 北京: 航天医学工程研究所, 2001: 25-37.
[3] Matty J. Results and analysis from space suit joint torque testing, AIAA-2010-6211[R]. Reston: AIAA, 2010.
[4] Wen J. Research on key technologies of space suit mobility for EVA operation[D]. Beijing: Beijing Jiaotong University, 2011 (in Chinese). 文剑. 舱外航天服活动性能关键技术研究[D]. 北京: 北京交通大学, 2011.
[5] Schmidt P B. An investigation of space suit mobility with applications to EVA operations[D]. Cambridge: Massachusetts Institute of Technology, 2001.
[6] Schmidt P B, Newman D J, Hodgson E. Modeling space suit mobility: applications to design and operations[R]. Michigan: Society of Automotive Engineers, 2001.
[7] Newman D J, Schmide P B, Rahn D B, et al. Modeling the extravehicular mobility unit (EMU) space suit: physiological implications for extravehicular activity (EVA)[C]//International Conference on Environmental Systems, Toulouse. 2000: 10-13.
[8] Mayergoyz I D. The classical preisach model of hysteresis[M]. New York: Springer, 1991: 1-24.
[9] Visintin A. Differential models of hysteresis[M]. Berlin: Springer, 1994: 297-377.
[10] Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61(1): 48-60.
[11] Leite J V, Avila S L, Batistela N J, et al. Real coded genetic algorithm for Jiles-Atherton model parameters identification[J]. IEEE Transactions on Magnetics, 2004, 40(2): 888-891.
[12] Goldberg D E. Genetic algorithms in search, optimization, and machine learning[M]. Reading Menlo Park: Addison-Wesley, 1989: 5-14.
[13] Holland J H. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[M]. Michigan: University of Michigan Press, 1975: 45-63.
[14] Kirkpatrick S. Optimization by simulated annealing: quantitative studies[J]. Journal of Statistical Physics, 1984, 34(5-6): 975-986.
[15] Xu D J, Liu M K, Shen F, et al. Fast DGPS integer ambiguity resolution using adaptive genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 371-377 (in Chinese). 徐定杰, 刘明凯, 沈锋, 等. 基于自适应遗传算法的 DGPS 整周模糊度快速解算[J]. 航空学报, 2013, 34(2): 371-377.
[16] An W G. Sructure optimization method based on a blending tapered model[J]. Chinese Journal of Aeronautics, 2013, 26(4): 943-947.
[17] Li Y Q, Wang R X, Xu M Q, et al. An improved genetic algorithm for a class of multi-resource range scheduling problem[J]. Journal of Astronautics, 2012, 33(1): 85-90 (in Chinese). 李玉庆, 王日新, 徐敏强, 等. 基于改进遗传算法的一类多资源测控调度问题研究[J]. 宇航学报, 2012, 33(1): 85-90.
[18] Mahfound S W, Goldberg D E. Parallel recombinative simulated annealing: a genetic algorithm[J]. Parallel Computing, 1995, 21(1): 1-28. |