[1] Atrens A, Ramamurthy S. The influence of applied stress rate on the stress corrosion cracking of 4340 and 3.5NiCrMoV steels in distilled water at 30 ℃[J]. Corrosion Science, 2010, 52(3): 1042-1051. [2] Muhammed K, Singh R, Khoddam R K. Stress corrosion cracking of novel steel for automotive applications[J]. Procedia Engineering, 2011, 10(1): 3381-3386. [3] Liang P, Li X G, Du C W, et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution[J]. Materials and Design, 2009, 3(5) : 1712-1717. [4] Eliaz N, Shachar A, Tal B, et al. Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels[J]. Engineering Failure Analysis, 2002, 9(2): 167-184. [5] Hu Y B, Dong C F, Sun M, et al. Effects of solution pH and Cl- on electrochemical behavior of an Aermet100 ultra-high strength steel in acidic environments[J]. Corrosion Science, 2011, 53(12): 4159-4165. [6] Ji G L, Li F G, Li Q H, et al. Research on the dynamic recrystallization kinetics of Aermet 100 steel[J]. Materials Science and Engineering A, 2010, 527(9): 2350-2355. [7] Li D M, Gangloff R P, Scully J R. Hydrogen trap states in ultrahigh-strength AerMet 100 steel[J]. Metallurgical and Materials Transactions A, 2004, 35(3): 849-864. [8] Thomas R L S, Scully J R, Gangloff R P. Internal hydrogen embrittlement of ultrahigh-strength AerMET 100 steel[J]. Metallurgical and Materials Transactions A, 2003, 34(2): 327-344. [9] Oehlert A, Atrens A. Stress corrosion crack propagation in AerMet 100[J]. Journal of Materials Science, 1998, 33(3): 775-781. [10] Contreras A, Albiter A, Sallazar M, et al. Slow strain rate corrosion and fracture characteristics of X-52 and X-70 pipeline steels[J]. Matrerial Science and Engineering: A, 2005, 407(1-2): 45-52. [11] Mohammad H M. Crack growth behavoir of pipeline steels in near neutral pH soil environment[D]. Edmonton: University of Alberta, 2010: 83-123. [12] Zheng C L, Lv B, Zhang F C, et al. Effect of secondary cracks on hydrogen embrittlement of bainitic steels[J]. Material Science and Engineering: A, 2012, 547: 99-103. [13] Zhong J Y, Sun M, Liu D B, et al. Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels[J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(3): 282-289. [14] Hallberg H, Leslie B S, Matti R. Crack tip transformation zones in austenitic stainless steel[J]. Engineering Fracture Mechanics, 2012, 79: 266-280. [15] Chen Y Y, Chou L B, Shih H C. Effect of solution pH on the electrochemical polarization and stress corrosion cracking of alloy 690 in 5M NaCl at room temperature[J]. Materials Science and Engineering: A, 2005, 396(1-2): 129-137. [16] Papadopoulos M P, Apostolopoulos C A, Alexopoulos N D, et al. Effect of salt spray corrosion exposure on the mechanical performance of different technical class reinforcing steel bars[J]. Materials and Design, 2007, 28(8): 2318-2328. [17] Liu J H, Tian S, Li S M, et al. Stress corrosion cracking behavior of new type ultra-high strength steel[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1164-1170. (in Chinese) 刘建华, 田帅, 李松梅, 等. 新型超高强钢应力腐蚀断裂行为研究[J]. 航空学报, 2011, 32(6): 1164-1170. [18] Yu M, Dong Y, Wang R Y, et al. Corrosion behavior of ultra-high strength steel 23Co14Ni12Cr3Mo in simulated seawater environment[J]. Materials Engineering, 2012(1): 42-50. (in Chinese) 于美, 董宇, 王瑞阳, 等. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为[J]. 材料工程,2012(1): 42-50. [19] Albarran J L, Martinez L, Lopez H F. Effect of heat treatment on the stress corrosion resistance of a microalloyed pipeline steel[J]. Corrosion Science, 1999, 41(6): 1031-1049. |