[1] Fujishima A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972, 238: 37-38.[2] Xiao H J. Aircraft oxygen equipment physiological research review and outlook[J]. Acta Aeronautica et Astronautica Sinica,2001,22(5): 441-443. ( in Chinese) 肖华军. 航空供氧装备生理研究回顾与展望[J]. 航空学报,2001,22(5): 441-443.[3] Jin T, Xu D, Diao P, et al. Preparation and photoelectrocatalytic water oxidation properties of FeO(OH)-TiO2/CoPi composite photoanodes[J]. Acta Physico-Chimica Sinica, 2012, 28(10): 2276-2284. (in Chinese) 金涛, 许頔, 刁鹏, 等. FeO(OH)-TiO2/CoPi复合光阳极的制备及其光电催化氧化水性能[J]. 物理化学学报,2012,28(10): 2276-2284.[4] Yu J, Yu X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J]. Environmental science & technology, 2008, 42(13): 4902-4907.[5] Cesar I, Kay A, Gonzalez Martinez J A, et al. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure directing effect of Si-doping[J]. Journal of the American Chemical Society, 2006, 128(14): 4582-4583.[6] Jin T, Diao P, Wu Q, et al. WO3 nanoneedles/ α-Fe2O3/cobalt phosphate composite photoanode for efficient photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental, 2014, 148-149: 304-310.[7] Ng Y H, Iwase A, Kudo A, et al. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting[J]. The Journal of Physical Chemistry Letters, 2010, 1(17): 2607-2612.[8] Guo M, Diao P, Cai S. Hydrothermal growth of well-aligned ZnO nanorod arrays: dependence of morphology and alignment ordering upon preparing conditions[J]. Journal of Solid State Chemistry, 2005, 178(6): 1864-1873.[9] Zhang L, Cheng H, Zong R, et al. Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity[J]. The Journal of Physical Chemistry C, 2009, 113(6): 2368-2374.[10] Hsu C H, Chen D H. Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films[J]. Nanotechnology, 2010, 21(28): 285603.[11] Mohan R, Krishnamoorthy K, Kim S J. Enhanced photocatalytic activity of Cu-doped ZnO nanorods[J]. Solid State Communications, 2012, 152(5): 375-380.[12] Cho S, Jang J W, Lee J S, et al. Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis[J]. CrystEngComm, 2010, 12(11): 3929-3935.[13] Gautam U K, Panchakarla L, Dierre B, et al. Solvothermal synthesis, cathodoluminescence, and field-emission properties of pure and N-doped ZnO nanobullets[J]. Advanced Functional Materials, 2009, 19(1): 131-140.[14] Yu C, Yang K, Shu Q, et al. Preparation of WO3/ZnO composite photocatalyst and its photocatalytic performance[J]. Chinese Journal of Catalysis, 2011, 32(3): 555-565.[15] Tian J, Chen L, Yin Y, et al. Photocatalyst of TiO2/ZnO nano composite film: preparation, characterization, and photodegradation activity of methyl orange[J]. Surface and Coatings Technology, 2009, 204(1): 205-214.[16] Zou C E, Rao Y F, Alyamani A, et al. Heterogeneous lollipop-like V2O5/ZnO array: a promising composite nanostructure for visible light photocatalysis[J]. Langmuir, 2010, 26(14): 11615-11620.[17] Xiang X, Xie L, Li Z, et al. Ternary MgO/ZnO/In2O3 heterostructured photocatalysts derived from a layered precursor and visible-light-induced photocatalytic activity[J]. Chemical Engineering Journal, 2013, 221(1): 222-229.[18] Steinmiller E M P, Choi K S. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production[J]. Proceedings of the National Academy of Sciences, 2009, 106(49): 20633-20636.[19] Dincǎ M, Surendranath Y, Nocera D G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions[J]. Proceedings of the National Academy of Sciences, 2010, 107(23): 10337-10341.[20] Jin T, Diao P, Xu D, et al. High-aspect-ratio WO3 nanoneedles modified with nickel-borate for efficient photoelectrochemical water oxidation[J]. Electrochimica Acta, 2013, 114: 271-277[21] Choi S K, Choi W, Park H. Solar water oxidation using nickel-borate coupled BiVO 4 photo-electrodes[J]. Physical Chemistry Chemical Physics, 2013, 15(17): 6499-6507.[22] Guo M, Diao P, Wang X, et al. The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films[J]. Journal of Solid State Chemistry, 2005, 178(10): 3210-3215.[23] Wang H, Xie J, Duan M. ZnO crystals with special morphologies: preparation by hydrothermal method and photocatalytic properties[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(2): 321-326. ( in Chinese) 王虎, 谢娟, 段明. 特殊形貌的ZnO 晶体: 水热法生长及光催化性能[J]. 无机化学学报, 2011, 27(2): 321-326.[24] Liu S J. Hydrothermal synthesis of six column like ZnO microcrystals, structure and photocatalytic properties[D]. Wuhan: Wuhan University of Technology, 2011. 刘淑洁. 水热法制备六方柱状ZnO微晶的形貌、结构与光催化性能[D]. 武汉: 武汉理工大学, 2011.[25] Fu H, Xu T, Zhu S, et al. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60[J]. Environmental Science & Technology, 2008, 42(21): 8064-8069.[26] Rudd A L, Breslin C B. Photo-induced dissolution of zinc in alkaline solutions[J]. Electrochimica Acta, 2000, 45(10): 1571-1579. |