[1] AMMAR S, LEGROS C, TRÉPANIER J Y. Conceptual design, performance and stability analysis of a 200 passengers blended wing body aircraft[J]. Aerospace Science and Technology, 2017, 71: 325-336. [2] LARKIN G, COATES G. A design analysis of vertical stabilisers for Blended Wing Body aircraft[J]. Aerospace Science and Technology, 2017, 64: 237-252. [3] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1): 10-25. [4] 王刚, 张彬乾, 张明辉, 等. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9): 623046. WANG G, ZHANG B Q, ZHANG M H, et al. Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623046(in Chinese). [5] VELAZQUEZ O, WEISS J, MORENCY F. Preliminary investigation on stall characteristics of a regional BWB for low speed approach[C]//35th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2017: 3738. [6] LU Y, ZHANG S G, ZHANG Z J, et al. Multiple hierarchy risk assessment with hybrid model for safety enhancing of unmanned subscale BWB demonstrator flight test[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2612-2626. [7] KWATNY H G, DONGMO J E T, CHANG B C, et al. Nonlinear analysis of aircraft loss of control[J]. Journal of Guidance, Control, and Dynamics, 2012, 36(1): 149-162. [8] SHEN L, HUANG D, WU G X. Effects of yaw-roll coupling ratio on the lateral-directional departure prediction and restraint[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2239-2253. [9] DONG Y Z, SHI Z W, CHEN K, et al. The suppression of flying-wing roll oscillations with open and closed-loop spanwise blowing[J]. Aerospace Science and Technology, 2020, 99: 105766. [10] 付军泉, 史志伟, 周梦贝, 等. 一种翼身融合飞行器的失速特性研究[J]. 航空学报, 2020, 41(1): 123176. FU J Q, SHI Z W, ZHOU M B, et al. Stall characteristics research of blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123176(in Chinese). [11] MURPHY P C, KLEIN V, FRINK N T. Nonlinear unsteady aerodynamic modeling using wind-tunnel and computational data[J]. Journal of Aircraft, 2016, 54(2): 659-683. [12] OWENS B, BRANDON J, CROOM M, et al. Overview of dynamic test techniques for flight dynamics research at NASA LaRC[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2006. [13] LUTZE F H, DURHAM W C, MASON W H. Unified development of lateral-directional departure criteria[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(2): 489-493. [14] MAYER R H, ZONDERVAN D J. Concept and benefits of a unified departure operation spacing standard[C]//2012 IEEE/AIAA 31 st Digital Avionics Systems Conference (DASC). Piscataway: IEEE, 2012: 4A6-1. [15] PARANJAPE A A, ANANTHKRISHNAN N. Analytical criterion for aircraft spin susceptibility[J]. Journal of Aircraft, 2010, 47(5): 1804-1807. [16] PARANJAPE A, SINHA N, ANANTHKRISHNAN N. Use of bifurcation and continuation methods for aircraft trim and stability analysis-A state-of-the-art[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. [17] LOWENBERG M H. Bifurcation analysis as a tool for post-departure stability enhancement[C]//22nd Atmospheric Flight Mechanics Conference. Reston: AIAA, 1997. [18] SHARMA S, COETZEE E B, LOWENBERG M H, et al. Numerical continuation and bifurcation analysis in aircraft design: An industrial perspective[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373: 20140406. [19] GILL S J, LOWENBERG M H, NEILD S A, et al. Upset dynamics of an airliner model: A nonlinear bifurcation analysis[J]. Journal of Aircraft, 2013, 50(6): 1832-1842. [20] 高浩, 周志强. 高机动性飞机大迎角全局稳定性研究[J]. 航空学报, 1987, 8(11): 561-571. GAO H, ZHOU Z Q. A study of the global. stability of high performance aircrafts at high angle-of-attack[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(11): 561-571(in Chinese). [21] 黎康, 方振平. 分叉分析方法在大迎角控制律设计中的应用[J]. 航空学报, 2003, 24(4): 289-292. LI K, FANG Z P. Application of bifurcation analysis to control law design at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(4): 289-292(in Chinese). [22] 刘昶, 赵波. 应用分支和突变理论对飞机空间机动稳定性的研究[J]. 航空学报, 1988, 9(9): 399-408. LIU C, ZHAO B. A study of aircraft global dynamic stability in maneuver by using the bifurcation and catastropha theory[J]. Acta Aeronautica et Astronautica Sinica, 1988, 9(9): 399-408(in Chinese). [23] 陈永亮. 飞机大迎角非线性动力学特性分析与控制[D]. 南京: 南京航空航天大学, 2007. CHEN Y L. Nonlinear dynamic characteristics analysis and control of aircraft at high-angle-of-attack[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese). [24] GONG Z, ARAUJO-ESTRADA S, LOWENBERG M H, et al. Experimental investigation of aerodynamic hysteresis using a five-degree-of-freedom wind-tunnel maneuver rig[J]. Journal of Aircraft, 2019, 56(3): 1029-1039. [25] PATTINSON J, LOWENBERG M H, GOMAN M G. Investigation of poststall pitch oscillations of an aircraft wind-tunnel model[J]. Journal of Aircraft, 2013, 50(6): 1843-1855. [26] 董彦非, 荣康, 高杰. 飞机飞行品质规范发展综述[J]. 飞行力学, 2010, 28(5): 1-4. DONG Y F, RONG K, GAO J. Development of aircraft flying qualities specification[J]. Flight Dynamics, 2010, 28(5): 1-4(in Chinese). |