ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2014, Vol. 35 ›› Issue (1): 13-28.doi: 10.7527/S1000-6893.2013.0335
• Review • Previous Articles Next Articles
CUI Pingyuan1,2, XU Rui1,2, ZHU Shengying1,2, ZHAO Fanyu1,2
Received:
2013-05-02
Revised:
2013-07-04
Online:
2014-01-25
Published:
2013-07-19
Supported by:
National Basic Research Program of China (2012CB720000); National Natural Science Foundation of China (60803051, 60874094); Research Fund for the Doctoral Program of Higher Education of China (20111101110001); Project of BIT Science and Technology Innovation Team
CLC Number:
CUI Pingyuan, XU Rui, ZHU Shengying, ZHAO Fanyu. State of the Art and Development Trends of On-board Autonomy Technology for Deep Space Explorer[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(1): 13-28.
[1] Gomez M. A typical spacecraft autonomy system[C]//IMCL Workshop on Machine Learning for Autonomous Space Applications, 2003.[2] Cancro G J. APL spacecraft autonomy: then, now, and tomorrow[J]. Johns Hopkins APL Technical Digest, 2010, 29(3): 226-233.[3] Atkinson D J, Smith B D. Autonomy technology at JPL[C]//Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2001.[4] Pell B, Bernard D E, Chien S A, et al. An autonomous spacecraft agent prototype[J]. Autonomous Robots, 1998, 5(1): 29-52.[5] Bermyn J. PROBA—project for on-board autonomy[J]. Air & Space Europe, 2000, 2(1): 70-76.[6] Teston F, Creasey R, Bermyn J, et al. PROBA: ESA's autonomy and technology demonstration mission[C]//The 13th Annual AIAA/USU Conference on Small Satellites, 1999.[7] Gantois K, Teston F, Montenbruck O, et al. PROBA-2 mission and new technologies overview[C]//Small Satellite Systems and Services—the 4S Symposium, 2006.[8] Chu Y H, Wang D Y, Huang X Y. Observability analysis based information fusion integrated navigation[J]. Aerospace Control, 2011, 29(2): 31-36. (in Chinese) 褚永辉, 王大轶, 黄翔宇. 基于能观度分析的信息融合组合导航方法研究[J]. 航天控制, 2011, 29(2): 31-36.[9] Gong J, Yang H, Zhao W, et al. Knowledge inference based self fault diagnosis method for spacecraft[J]. Aerospace Control and Application, 2011, 37(4): 19-23. (in Chinese) 龚健, 杨桦, 赵玮, 等. 基于知识推理的航天器自主故障诊断方法[J]. 空间控制技术与应用, 2011, 37(4): 19-23.[10] Li Z B, Wu H X, Xie Y C, et al. Experimental platform for spacecraft intelligent control[J]. Acta Automatica Sinica, 2001, 27(5): 695-699. (in Chinese) 李智斌, 吴宏鑫, 谢永春, 等. 航天器智能控制实验平台[J]. 自动化学报, 2001, 27(5): 695-699.[11] Dai S W, Sun H X. Autonomous control for spacecraft[J]. Chinese Journal of Space Science, 2002, 22(2): 147-153. (in Chinese) 代树武, 孙辉先. 卫星运行中的自主控制技术[J]. 空间科学学报, 2002, 22(2): 147-153.[12] Li B Q, Li X Z, Wang H F, et al. Mission planning method of the greedy algorithm and dynamic programming[J]. Microelectronics & Computer, 2013, 30(2): 144-147. (in Chinese) 李博权, 李绪志, 王红飞, 等. 贪婪算法与动态规划结合的任务规划方法[J]. 微电子学与计算机, 2013, 30(2): 144-147.[13] Pan Z S, Meng X, Zheng J H, et al. Research on simulation elements of space missions demonstration platform[J]. Journal of System Simulation, 2012, 24(7): 1366-1372. (in Chinese) 潘忠石, 孟新, 郑建华, 等. 空间任务论证平台仿真要素研究[J]. 系统仿真学报, 2012, 24(7): 1366-1372.[14] Huang H B, Ma G F, Zhuang Y F, et al. Real-time re-planning for satellite formation reconfiguration in deep space[J]. Journal of Astronautics, 2012, 33(3): 325-333. (in Chinese) 黄海滨, 马广富, 庄宇飞, 等. 深空环境下卫星编队飞行队形重构实时重规划[J]. 宇航学报, 2012, 33(3): 325-333.[15] Chen Y W, Yao F, Li J F, et al. A learnable ant colony optimization to the mission planning of multiple satellites[J]. Systems Engineering-Theory & Practice, 2013, 33(3): 791-801. (in Chinese) 陈英武, 姚锋, 李菊芳, 等. 求解多星任务规划问题的演化学习型蚁群算法[J]. 系统工程理论实践, 2013, 33(3): 791-801.[16] Sun K, Bai G Q, Chen Y W, et al. Action planning for agile earth-observing satellite mission planning problem[J]. Journal of National University of Defense Technology, 2012, 34(6): 141-147. (in Chinese) 孙凯, 白国庆, 陈英武, 等. 面向动作序列的敏捷卫星任务规划问题[J]. 国防科技大学学报, 2012, 34(6): 141-147.[17] Xu R, Cui P Y, Xu X F. Realization of multi-agent planning system for autonomous spacecraft[J]. Advances in Engineering Software, 2005, 36(4): 266-272.[18] Xu R, Cui P Y, Xu X F. Design for autonomous mission planning system[J]. Aircraft Engineer and Aerospace Technology: An International Journal, 2003, 75(4): 365-371.[19] Wu H X, Hu H X, Xie Y C, et al. Several questions on autonomous rendezvous docking[J]. Journal of Astronautics, 2003, 24(2): 132-137, 143. (in Chinese) 吴宏鑫, 胡海霞, 谢永春, 等. 自主交会对接若干问题[J]. 宇航学报, 2003, 24(2): 132-137, 143.[20] Cui H T, Cheng X J, Xu R, et al. RHC-based attitude control of spacecraft under geometric constraints[J]. Aircraft Engineering and Aerospace Technology, 2011, 83(5): 296-305.[21] Xu R, Cheng X J, Cui H T. Autonomous pointing avoidance of spacecraft attitude maneuver using backstepping control method[M]//Zhu M. Electrical Engineering and Control. Berlin: Springer-Verlag Berlin Heidelberg, 2011: 817-825.[22] Pell B, Sawyer S R, Muscettola N, et al. Mission operations with an autonomous agent[C]//1998 IEEE Aerospace Conference, 1998, 2: 289-313.[23] Lee S C, Santo A G. Reducing mission operations costs through spacecraft autonomy: the near earth asteroid rendezvous (NEAR) experience[J]. Journal of Reducing Space Mission Cost, 1998, 1(1): 87-104.[24] Marshall M H, Low G D. Final report of the autonomous spacecraft maintenance study group, NASA-CR-164076[R]. 1981.[25] Chiu M C, Von-Mehlem U I, Willey C E, et al. ACE spacecraft[J]. Space Science Reviews, 1998, 86(1-4): 257-284.[26] Wozniak J J. Vehicle technology at APL[J]. Johns Hopkins APL Technical Digest, 2003, 24(1): 19-30.[27] Wiley S, Herbert G, Mosher L. Design and development of the NEAR propulsion system, AIAA-1995-2977[R]. Reston: AIAA, 1995.[28] Rasmussen R D, Singh G, Rathbun D B, et al. Behavioral model pointing on Cassini using target vectors[C]//Proceedings of the Annual Rocky Mountain Guidance and Control Conference, 1995: 91-110.[29] Singh G, Macala G, Wong E, et al. A constraint monitor algorithm for the Cassini spacecraft, AIAA-1997-3526[R]. Reson: AIAA, 1997.[30] Chien, S, Doyle R, Davies A G, et al. The future of AI in space[J]. IEEE Intelligent Systems, 2006, 21(4): 64-69.[31] Rajan K, Shirley M, Taylor W, et al. Ground tools for autonomy in the 21st century[C]//2000 IEEE Aerospace Conference Proceedings, 2000, 7: 649-659.[32] Cancro G, Innanen W, Turner R, et al. Uploadable executable specification concept for spacecraft autonomy systems[C]//2007 IEEE Aerospace Conference Proceedings, 2007: 1-12.[33] Turner R, Hooda S, Gersh J, et al. ExecSpec: visually designing and operating a finite state machine-based spacecraft autonomy system[C]//Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2008.[34] Steel R, Niezette M, Cesta A, et al. Advanced planning and scheduling initiative: MrSPOCK AIMS for XMAS in the space domain[C]//Proceedings of IJCAI-09 Workshop on Artificial Intelligence in Space, 2009.[35] Verfaillie G, Infantes G, Lematre M, et al. On-board decision-making on data downloads[C]//The 7th International Workshop on Planning and Scheduling for Space (IWPSS-11), 2011.[36] Nayak P, Kurien J, Dorais G, et al. Validating the DS-1 remote agent experiment[C]//Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 1999: 349.[37] Ghallab M, Nau D, Traverso P. Automated planning: theory & practice[M]. Burlington: Morgan Kaufmann, 2004.[38] Chien S, Smith B, Rabideau G, et al. Automated planning and scheduling for goal-based autonomous spacecraft[J]. IEEE Intelligent Systems and their Applications, 1998, 13(5): 50-55.[39] Katz D S, Some R R. NASA advances robotic space exploration[J]. Computer, 2003, 36(1): 52-61.[40] Chien S, Rabideau G, Knight R, et al. ASPEN-automated planning and scheduling for space mission operations[C]//The Six International Conference on Space Operations (SpaceOps 2000), 2000.[41] Chien S A, Knight R, Stechert A, et al. Using iterative repair to improve the responsiveness of planning and scheduling[C]//Proceedings of the Fifth International Conference on Artificial Intelligence Planning and Scheduling, 2000: 300-307.[42] Knight S, Rabideau G, Chien S, et al. Casper: space exploration through continuous planning[J]. IEEE Intelligent Systems, 2001, 16(5): 70-75.[43] Chien S, Sherwood R, Tran D, et al. Lessons learned from autonomous sciencecraft experiment[C]//Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, 2005: 11-18.[44] European Cooperation for Space Standardization. Space engineering-space segment operability, ECSS-E-70-11[R]. Noordwijk: ESA Publications Division, 2005.[45] Woods M, Long D, Baldwin L, et al. On-board planning and scheduling for the ExoMars mission[C]//Proceedings of the DASIA, 2006: 22-25.[46] Mose Sorensen E, Ferri P. Technology driver-the Rosetta mission[C]//IEE 5th CCSDS Workshop on New Technologies, New Standards, 1998: 2/1-2/8.[47] Pekala M, Cancro G, Moore J. Verifying executable specifications of spacecraft autonomy[C]//Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2008.[48] Verfaillie G, Charmeau M C. A generic modular architecture for the control of an autonomous spacecraft[C]//The 5th International Workshop on Planning and Scheduling for Space (IWPSS-06), 2006.[49] Alami R, Chatila R, Fleury S, et al. An architecture for autonomy[J]. International Journal of Robotics Research, 1998, 17(4): 315-337.[50] Barrett A. Autonomy architectures for a constellation of spacecraft[C]//Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 1999: 291.[51] Fesq L, Aljabri A, Anderson C, et al. Spacecraft autonomy in the new millennium[C]//19th Annual AAS Guidance and Control Conference, 1996.[52] Smith B, Millar W, Dunphy J, et al. Validation and verification of the remote agent for spacecraft autonomy[C]//Proceedings of 1999 IEEE Aerospace Conference, 1999, 1: 449-468.[53] Low K H, Leow W K, Ang Jr M H. A hybrid mobile robot architecture with integrated planning and control[C]//Proceedings of the 1st International Joint Conference on Autonomous Agents and Multiagent Systems, 2002: 219-226.[54] Charmeau M C, Bensana E. AGATA: a lab bench project for spacecraft autonomy[C]//Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2005.[55] Gregory N M, Dorais G A, Fry C, et al. IDEA: planning at the core of autonomous reactive agents[C]//Proceedings of the 3rd International NASA Workshop on Planning and Scheduling for Space, 2002.[56] Chien S A, Johnston M, Frank J, et al. A generalized timeline representation, services, and interface for automating space mission operations[C]//The 12th International Conference on Space Operations (SpaceOps 2012), 2012.[57] Frank J D, Clement B J, Chachere J M, et al. The challenge of configuring model-based space mission planners[C]//The 7th International Workshop on Planning and Scheduling for Space (IWPSS-11), 2011.[58] Morris P, Schwabacher M, Dalal M, et al. Embedding temporal constraints for coordinated execution in habitat automation[C]//The 8th International Workshop on Planning and Scheduling for Space (IWPSS-13), 2013.[59] Johnston M D. Spike: AI scheduling for NASA's hubble space telescope[C]//Sixth Conference on Artificial Intelligence Applications, 1990: 184-190.[60] Museettola N. HSTS: integrating planning and scheduling, CMU-RI-TR-93-05[R]. Pittsburgh: Robotics Institute, Carnegie Mellon University, 1993.[61] Bedrax-Weiss T, McGann C, Iatauro M. EUROPA2: plan database services for planning and scheduling applications[C]//Workshop of System Demonstration (ICAPS 2005), 2005: 18-19.[62] Verfaillie G, Pralet C, Lematre M. How to model planning and scheduling problems using constraint networks on timelines[J]. Knowledge Engineering Review, 2010, 25(3): 319.[63] Ghallab M, Howe A, Knoblock C, et al. PDDL—the planning domain definition language, Tech Report CVC TR-98-003/DCS TR-1165[R]. 1998.[64] Fox M, Long D. PDDL2.1: an extension to PDDL for expressing temporal planning domains[J]. Journal of Artificial Intelligence Research, 2003, 20: 61-124.[65] Elachi. C. The critical role of communications and navigation technologies to the success of space science enterprise missions[C]//Keynote Address DESCANSO International Symposium, 1999.[66] Bhaskaran S, Riedel J E, Synnott S P. Autonomous optical navigation for interplanetary missions[C]//Proceedings of SPIE, 1996, 2810: 32-43.[67] Desai S, Han D, Bhaskaran S, et al. Autonomous optical navigation[R]. 2001.[68] Lisman S S, Chang D H, Singh G, et al. Autonomous guidance and control of a solar electric propulsion spacecraft, AIAA-1997-3818[R]. Reston: AIAA, 1997.[69] Bhaskaran S, Desai S, Dumont P, et al. Orbit determination performance evaluation of the deep space 1 autonomous navigation system[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, 1998.[70] Bhat R S, Stumpf P W, Frauenholz R B. Deep impact ground navigation maneuver design and performance[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, 2006: 123-142.[71] Uo M, Shirakawa K, Hashimoto T, et al. Hayabusa's touching-down to Itokawa-autonomous guidance and navigation[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, 2006: 1805-1816.[72] Froyum K, Goepfert S, Henrickson J, et al. Honeywell micro electro mechanical systems (MEMS) inertial measurement unit (IMU)[C]//2012 IEEE/ION Position Location and Navigation Symposium (PLANS), 2012: 831-836.[73] Grotzinger J P, Crisp J, Vasavada A R, et al. Mars Science Laboratory mission and science investigation[J]. Space Science Reviews, 2012, 170(1-4): 5-56.[74] Bregon A, Daigle M, Roychoudhury I. An integrated framework for model-based distributed diagnosis and prognosis[C]//Annual Conference of the Prognostics and Health Management Society, 2012: 416-426.[75] Pecheur C, Simmons R. From livingstone to SMV[M]//Rash J L, Truszkowski W, Hinchey M G. Formal Approaches to Agent-based Systems. Berlin: Springer-Verlag Berlin Heidelberg, 2001: 103-113.[76] Hu Q L, Friswell M I, Wagg D J, et al. Adaptive backstepping fault-tolerant control for flexible spacecraft with bounded unknown disturbances[C]//Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference, 2009: 788-793.[77] Kurtoglu T, Tumer I Y. A graph-based fault identification and propagation framework for functional design of complex systems[J]. Journal of Mechanical Design, 2008, 130(5): 051401.[78] Kuhn L, de Kleer J, Liu J. Online model-based diagnosis for multiple, intermittent and interaction faults[C]//Annual Conference of the Prognostics and Health Management Society, 2009.[79] Castano A, Fukunaga A, Biesiadecki J, et al. Automatic detection of dust devils and clouds on Mars[J]. Machine Vision and Applications, 2008, 19(5-6): 467-482.[80] Thompson D, Niekum S, Smith T, et al. Automatic detection and classification of features of geologic interest[C]//2005 IEEE Aerospace Conference, 2005: 366-377.[81] Chien S, Sherwood R, Tran D, et al. Using autonomy flight software to improve science return on earth observing one[J]. Journal of Aerospace Computing, Information, and Communication, 2005, 2(4): 196-216.[82] Castano R, Wagstaff K L, Chien S, et al. On-board analysis of uncalibrated data for a spacecraft at Mars[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007: 922-930.[83] Chien S A, Tran D, Rabideau G, et al. Improving the operations of the earth observing one mission via automated mission planning, AIAA-2010-2199[R]. Reston: AIAA, 2010.[84] Hayden D S, Chien S, Thompson D R, et al. Onboard clustering of aerial data for selective data return[C]//Proceedings of the 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2010.[85] Thompson D R, Smith T, Wettergreen D. Information-optimal selective data return for autonomous rover traverse science and survey[C]//IEEE International Conference on Robotics and Automation, 2008: 968-973.[86] Rabideau G, Chien S, McLaren D. Onboard run-time goal selection for autonomous operations, AIAA-2010-2203[R]. Reston: AIAA, 2010.[87] Rabideau G, Chien S, McLaren D. Tractable goal selection for embedded systems with oversubscribed resources[J]. Journal of Aerospace Computing, Information, and Communication, 2011, 8(5): 151-169.[88] Hayden D S, Chien S, Thompson D R, et al. Onboard clustering of aerial data for selective data return[C]//Proceedings of the 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2010.[89] Stottler R. Satellite communication scheduling, optimization, and deconfliction using artificial intelligence techniques[C]//The 11th International Conference on Space Operations (SpaceOps 2010), 2010.[90] Gerevini A E, Serina I. Efficient plan adaptation through replanning windows and heuristic goals[J]. Fundamenta Informaticae, 2010, 102(3-4): 287-323.[91] Donati A, Policella N. AI planning and scheduling infusion in space: ESA achievements and perspectives[C]//The 11th International Conference on Space Operations (SpaceOps 2010), 2010. |
[1] | Hongyu YIN, Yu WU, Tianjiao LIANG. Cooperative path planning for patrol coverage of fixed wing UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 328944-328944. |
[2] | Jidong SU, Weilin XU, Shenghua ZHAI, Wei WANG, Yating HE. Practice and prospect of space AD hoc network technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529912-529912. |
[3] | Weiping YANG. Development trend of navigation guidance and control technology for new generation aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529720-529720. |
[4] | Zhu WANG, Mengtong ZHANG, Zhenpeng ZHANG, Guangtong XU. Multi-UAV cooperative path planning based on multi-index dynamic priority [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328816-328816. |
[5] | Qingrui ZHANG, Yunyun LIU, Huijie SUN, Bo ZHU. Robust cooperative tracking control for close formation of fixed⁃wing unmanned aerial vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 629233-629233. |
[6] | Zhe LIU, Xige ZHANG, Changzhu WEI, Naigang CUI. High-precision adaptive convex programming for reentry trajectories of suborbital vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729430-729430. |
[7] | Xuejian WANG, Yongming WEN, Xiaorong SHI, Ningning ZHANG, Jiexi LIU. Design of hybrid intelligent decision framework for multi⁃agent and multi⁃coupling tasks [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729770-729770. |
[8] | Zhenwei WANG, Kai LIU, Jian GUO, Xiaopeng LIU. A multi⁃UAVs and multi⁃USVs formation cooperative mechanism based on leader⁃follower strategy [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729791-729791. |
[9] | Lianbo YU, Pinzhao CAO, Liang SHI, Jie LIAN, Dong WANG. An improved conflict⁃based search algorithm for multi⁃agent path planning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727648-727648. |
[10] | Xiaolong DENG, Xixiang YANG, Bingjie ZHU, Zhenyu MA, Zhongxi HOU. Simulation research and key technologies analysis of intelligent stratospheric aerostat Loon [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127412-127412. |
[11] | Xianzhong GAO, Xiaolong DENG, Yujie WANG, Zheng GUO, Zhongxi HOU. General planning method for energy optimal flight path of solar⁃powered aircraft in near space [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 27265-027265. |
[12] | Yongzhi SHENG, Jiahao GAN, Chengxin ZHANG. Fractional order sliding mode guidance law design with trajectory adjustable and terminal angular constraint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 327073-327073. |
[13] | Yong XU, Hongtao YAN, Tao JIA, Yue MA, Zehua DENG, Duoneng LIU. Aerial simulation docking technology of fixed-wing clustering UAVs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326539-326539. |
[14] | Dapeng ZHANG, Zongbo HUYAN, Hengnian LI. X-ray pulsar-based navigation verification based on satellite measured data [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526510-526510. |
[15] | Guodong XU, Danlei ZHANG, Zhendong XU. Arrival time processing method of pulsar characteristic frequency signals [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526185-526185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341