ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2014, Vol. 35 ›› Issue (1): 29-45.doi: 10.7527/S1000-6893.2013.0265
• Review • Previous Articles Next Articles
LENG Jinsong1, SUN Jian1, LIU Yanju2
Received:
2012-12-07
Revised:
2013-05-13
Online:
2014-01-25
Published:
2013-06-19
Supported by:
National Natural Science Foundation of China (90916011)
CLC Number:
LENG Jinsong, SUN Jian, LIU Yanju. Application Status and Future Prospect of Smart Materials and Structures in Morphing Aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(1): 29-45.
[1] Du S Y, Leng J S, Wang D F. Smart material systems and structures[M]. Beijing: Science Press, 2001: 1-5. (in Chinese) 杜善义, 冷劲松, 王殿富. 智能材料系统和结构[M]. 北京: 科学出版社, 2001: 1-5.[2] Lloyd P A. Requirements for smart materials[J]. Proceedings of Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 22(4): 471-478.[3] Barbarino S, Bilgen O, Ajaj R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877.[4] Gomez J C, Garcia E. Morphing unmanned aerial vehicles[J]. Smart Materials and Structures, 2011, 20(10): 1-16.[5] Hartl D J, Lagoudas D C. Aerospace applications of shape memory alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221(4): 535-552.[6] Du S Y, Zhang B M. Status and developments of intelligentized aircraft structures[J]. Journal of Astronautics, 2007, 28(4): 773-778. (in Chinese) 杜善义, 张博明. 飞行器结构智能化研究及其发展趋势[J]. 宇航学报, 2007, 28(4): 773-778.[7] Chen Y, Xiong K, Wang X W, et al. Progress and challenges in aeronautical smart structure systems[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(1): 21-25. (in Chinese) 陈勇, 熊克, 王鑫伟, 等. 飞行器智能结构系统研究进展与关键问题[J]. 航空学报, 2004, 25(1): 21-25.[8] Qiu J H, Bian Y X, Ji H L, et al. Application of smart materials and structures in aviation industry[J]. Aeronautical Manufacturing Technology, 2009(3): 26-29. (in Chinese) 裘进浩, 边义祥, 季宏丽, 等. 智能材料结构在航空领域中的应用[J]. 航空制造技术, 2009(3): 26-29.[9] Jha A K, Kudva J N. Morphing aircraft concepts, classifications, and challenges[C]//Proceedings of SPIE 5388, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies. 2004, 5388: 213-224.[10] Smith K, Butt J, Spakovsky M R, et al. A study of the benefits of using morphing wing technology in fighter aircraft systems[C]//39th AIAA Thermophysics Conference. USA: AIAA, 2007, AIAA 2007-4616: 1-12.[11] Roth B, Peters C, Crossley W A. Aircraft sizing with morphing as an independent variable: motivation, strategies and investigations[C]//AIAA's Aircraft Technology, Integration, and Operations (ATIO) 2002 Technical. USA: AIAA, 2002, AIAA 2002-5840: 1-11.[12] Peters C, Roth B, Crossley W A, et al. Use of design methods to generate and develop missions for morphing aircraft[C]//9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. USA: AIAA, 2002, AIAA 2002-5468: 1-11.[13] Frommer J B, Crossley W A. Enabling continuous optimization for sizing morphing aircraft concepts[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. USA: AIAA, 2005, AIAA 2005-816: 1-12.[14] Cistone J. Next century aerospace traffic management: the sky is no longer the limit[J].Journal of Aircraft, 2004, 41(1): 36-42.[15] Rodriguez A R. Morphing aircraft technology survey[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. USA: AIAA, 2007, AIAA 2007-1258: 1-16.[16] Calkins F T, Mabe J H. Shape memory alloy based morphing aerostructures[J]. Journal of Mechanical Design, 2010, 132(11): 1-7.[17] Zhu H, Liu W D, Zhao C S. Morphing aircraft and its morph-driving techniques[J]. Machine Building and Automation, 2010, 39(2): 8-14, 125. (in Chinese) 朱华, 刘卫东, 赵淳生. 变体飞行器及其变形驱动技术[J]. 机械制造与自动化, 2010, 39(2): 8-14, 125.[18] Cui E J, Bai P, Yang J M. Development of smart morphing aircrafts[J]. Aeronautical Manufacturing Technology, 2007 (8): 38-41. (in Chinese) 崔尔杰, 白鹏, 杨基明. 智能变形飞行器的发展道路[J]. 航空制造技术, 2007(8): 38-41.[19] Joshi S P, Tidwell Z, Crossley W A, et al. Comparison of morphing wing stategies based upon aircraft performance impacts[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. USA: AIAA, 2004, AIAA 2004-1722: 1-7.[20] Bye D R, McClure P D. Design of a morphing vehicle[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2007, AIAA 2007-1728: 1-16.[21] Leng J S, Du S Y. Shape memory polymer and multifunctional nanocomposite[M]. UK: CRC Press/Taylor & Francis, 2010: 1-15.[22] Ivanco T G, Scott R C, Love M H, et al. Validation of the Lockheed Martin morphing concept with wind tunnel testing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2007, AIAA 2007-2235:1-17.[23] Flanaganl J S, Strutzenberg R C, Myers R B, et al. Development and flight testing of a morphing aircraft, the NextGen MFX-1[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2007, AIAA 2007-1707: 1-3.[24] Keihl M M, Bortolin R S, Sanders B, et al. Mechanical properties of shape memory polymers for morphing aircraft applications[C]//Proceedings of SPIE Vol. 5762. USA: SPIE, 2005: 143-151.[25] Andersen G R, Cowan D L, Piatak D J. Skin designs using multi-objective topology optimization[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2007, AIAA 2007-1734:1-15.[26] Yu K, Yin W L, Sun S, et al. Design and analysis of morphing wing based on SMP composite[C]//Proceedings of SPIE Vol. 7290. USA: SPIE, 2009: 1-8.[27] Perkins D A, Reed J L, Havens J E. Morphing wing structures for loitering air vehicles[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. USA: AIAA, 2004, AIAA 2004-1888: 1-10.[28] Sneed R C, Smith R R, Cash M F, et al. Smart-material based hydraulic pump system for actuation of a morphing wing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2007, AIAA 2007-1702: 1-10.[29] Chen Y J, Sun J, Liu Y J, et al. Experiment and analysis of fluidic flexible matrix composite (F2MC) tube[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(3): 279-290.[30] Chen Y J, Sun J, Liu Y J, et al. Variable stiffness properties study on shape memory polymer composite tube[J]. Smart Materials and Structures, 2012, 21(9): 1-9.[31] Chen Y J, Yin W L, Liu Y J, et al. Structural design and analysis of morphing skin embedded with pneumatic muscle fibers[J]. Smart Materials and Structures, 2011, 20(8): 1-8.[32] Kudva J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 261-267.[33] Li J, Qin Y H, Bai T, et al. Development of a morphing wing with adaptive capability[J]. Acta Aerodynamica Sinica, 2009, 27(5): 505-508. (in Chinese) 黎军, 秦燕华, 白涛, 等. 采用智能材料的变弯扭机翼实验研究[J]. 空气动力学学报, 2009, 27(5): 505-508.[34] Yin W L, Fu T, Liu J C, et al. Structural shape sensing for variable camber wing using FBG sensors[C]//Proceedings of SPIE Vol. 7292. USA: SPIE, 2009: 1-10.[35] Leng J S, Liu L W, Lv H B, et al. Applications of shape memory polymer composite structures in aerospace[J]. JEC Composites Magazine, 2012, 72: 36-38.[36] Sun J, Xu Y Y, Chen Y J, et al. Mechanical and electrical properties of spandex reinforced GMWNT/epoxy shape memory composites[C]//Proceedings of SPIE Vol. 8342. USA: SPIE, 2012: 1-6.[37] Kota S, Hetrick J, Osborn R, et al. Design and application of compliant mechanisms for morphing aircraft structures[C]//Proceedings of SPIE Vol. 5054. USA: SPIE, 2003: 24-33.[38] Barbarino S, Pecora R, Lecce L, et al. Airfoil structural morphing based on SMA actuator series: numerical and experimental studies[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10): 987-1004.[39] Yang Y, Xu Z W. Research of the airfoil structure based on a shape-memory alloy actuated morphing wing[J]. Ordnance Material Science and Engineering, 2010, 33(1): 25-30. (in Chinese) 杨媛, 徐志伟. 基于SMA 的飞行器变体机翼驱动结构研究[J]. 兵器材料科学与工程, 2010, 33(1): 25-30.[40] Brailovski V, Terriault P, Georges T, et al. SMA actuators for morphing wings[J]. Physics Procedia, 2010, 10: 197-203.[41] O'Neill C, Burchfield J. Kinetic ceramics piezoelectric hydraulic pumps[C]//Proceedings of SPIE Vol. 6527. USA: SPIE, 2007: 1-14.[42] Sun J, Sun Q J, Liu Y J, et al. Design of piezoelectric stack pump based on flexible amplification mechanism[C]//Proceedings of the 16th National Conference of Composite Material (Composite Material: Innovation and Sustainable Development). Beijing: China Science and Technology Press, 2012: 1222-1228. (in Chinese) 孙健, 孙启健, 刘彦菊, 等. 一种基于柔性放大机构的压电叠堆泵设计[C]//第16届全国复合材料学术会议论文集《复合材料:创新与可持续发展》. 北京: 中国科学技术出版社, 2012, 1222-1228.[43] Bilgen O, Kochersberger K, Diggs E C, et al. Morphing wing micro-air-vehicles via macro-fiber-composite actuators[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2007, AIAA 2007-1785: 1-16.[44] Vos R, Barrett R, Breuker R, et al. Post-buckled precompressed elements: a new class of control actuators for morphing wing UAVs[J]. Smart Materials and Structures, 2007, 16(3): 919-926.[45] Manzol J, Garcia E, Wickenheiser A, et al. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism[C]//Proceedings of SPIE Vol. 5764. USA: SPIE, 2005: 232-240.[46] Li W, Xiong K, Chen H, et al. Research on variable cant angle winglets with shape memory alloy spring actuators[J]. Acta Aeronautic et Astronautica Sinica, 2012, 31(1): 22-33. (in Chinese) 李伟, 熊克, 陈宏, 等. 含有SMA弹簧驱动器的可变倾斜角翼梢小翼研究[J]. 航空学报, 2012, 31(1): 22-33.[47] Syaifuddin M, Park H C, Yoon K J, et al. Design and evaluation of LIPCA-actuated flapping device[C]//Proceedings of SPIE Vol. 5764. USA: SPIE, 2005: 151-158.[48] Kim H I, Kim D K, Han J H. Study of flapping actuator modules using IPMC[C]//Proceedings of SPIE Vol. 6524. USA: SPIE, 2007: 1-12.[49] Kim D K, Kim H I, Han J H, et al. Experimental investigation on the aerodynamic characteristics of a bio-mimetic flapping wing with macro-fiber composites[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(3): 423-431.[50] Monner H P, Riemenschneider J, Opitz S, et al. Development of active twist rotors at the German Aerospace Center (DLR)[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. USA: AIAA, 2011, AIAA 2011-1824: 1-10.[51] Konstanzer P, Enenkl B, Aubourg P A, et al. Recent advances in Eurocopter's passive and active vibration control[C]//The American Helicopter Society 64th Annual Forum. USA: the American Helicopter Society, 2008.[52] Bushnell G S, Arbogast D, Ruggeri R. Shape control of a morphing structure (rotor blade) using a shape memory alloy actuator system[C]//Proceedings of SPIE Vol. 6928. USA: SPIE, 2008: 1-11.[53] Straub F K, Kennedy D K, Domzalski D B, et al. Smart material-actuated rotor technology-SMART[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 249-260.[54] Straub F K, Kennedy D K, Stemple A D, et al. Development and whirl tower test of the Smart active flap rotor[C]//Proceedings of SPIE Vol.5388. USA: SPIE, 2004: 1-11.[55] Lau B H, Obriecht N, Gasow T, et al. Boeing-SMART test report for DARPA helicopter quieting program. USA: Boeing, ADA529306, 2009: 1-15.[56] Zhang Z, Huang W J, Yang W D. Design analysis and test of smart rotor blades model with trailing edge flaps[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43(3): 296-301. (in Chinese) 张柱, 黄文俊, 杨卫东. 后缘小翼型智能旋翼桨叶模型设计分析与试验研究[J]. 南京航空航天大学学报, 2011, 43(3): 296-301.[57] Zhou G Q, Lu D J, Yang W D. Wind tunnel testing of active twist smart rotor[J]. Helicopter Technique, 2007(3): 81-87. (in Chinese) 周国庆, 卢德军, 杨卫东. 主动扭转智能旋翼模型试验研究[J]. 直升机技术, 2007(3): 81-87.[58] Song G B, Ma N, Li L Y, et al. Design and control of a proof-of-concept active jet engine[J]. Smart Structures and Systems, 2011, 7(1): 1-13.[59] Lee H J, Song G B. Prototype morphing fan nozzle demonstrated[DB/OL]. (2005-01-18)[2012-11-29] . http:. www.grc.nasa.gov/WWW/RT/2003/5000/5930lee.html.[60] Mabe J. Variable area jet nuzzle for noise reduction using shape memory alloy actuators[C]//Acoustics 08 Paris. France: European Acoustics Association, 2008: 5487-5492.[61] Pitt D M, Dunne J P, White E V. Design and test of a SMA powered adaptive aircraft inlet internal wall[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2002, AIAA2002-1356: 1-8.[62] Hartl D, Lagoudas D C. Aerospace applications of shape memory alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221 (4): 535-552.[63] Leng J S, Lan X, Liu Y J, et al. Shape-memory polymers and their composites: stimulus methods and applications[J]. Progress in Materials Science, 2011, 56(7): 1077-1135.[64] Olympio K R, Gandhi F. Zero Poisson's ratio cellular honeycombs for flex skins undergoing one-dimensional morphing[J]. Journal of Intelligent Material Systems and Structures, 2009, 21(17): 1737-1753.[65] Bubert E A, Woods B K S, Lee K J, et al. Design and fabrication of a passive 1D morphing aircraft skin[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(7): 1699-1717.[66] Dong E B. Research on realization mechanism and some key technologies of smart morphing aircraft structures[D]. Hefei: School of Engineering Science, University of Science and Technology of China, 2010. 董二宝. 智能变形飞行器结构实现机制与若干关键技术研究[D]. 合肥: 中国科学技术大学工程科学学院, 2010.[67] Thill C, Etches J A, Bond I P, et al. Composite corrugated structures for morphing wing skin applications[J]. Smart Materials and Structures, 2010, 19: 124009.[68] Mou C W, Wang B F, Ge R J, et al. Basal body preparation and drive characteristic of corrugated skin with the active deformability[J]. Ordnance Material Science and Engineering, 2010, 33(2): 11-14. (in Chinese) 牟常伟, 王帮峰, 葛瑞钧, 等. 可主动变形的波纹式蒙皮基体制备及驱动特性[J]. 兵器材料科学与工程, 2010, 33(2): 11-14.[69] Monnier T. Lamb Waves-based impact damage monitoring of a stiffened aircraft panel using piezoelectric transducers[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(5): 411-421.[70] Wu J, Yuan S F, Ji S, et al. Multi-agent system design and evaluation for collaborative wireless sensor network in large structure health monitoring[J]. Expert Systems with Applications, 2010, 37(3): 2028-2036.[71] Dai Y B, Liu Y J, Leng J S, et al. A novel time-division multiplexing fiber bragg grating sensor interrogator for structural health monitoring[J]. Optics and Lasers in Engineering, 2009, 47(10): 1028-1033.[72] Fu T, Liu Y J, Li Q L, et al. Fiber optic acoustic emission sensor and its applications in the structural health monitoring of CFRP materials[J]. Optics and Lasers in Engineering, 2009, 47(10): 1056-1062.[73] Chen Y, Viresh W, Zimcik D. Development and verification of real-time controllers for F/A-18 vertical fin buffet load alleviation[C]//Proceedings of SPIE Vol. 6173. USA: SPIE, 2006: 1-12.[74] Yi G, Liu Y J, Leng J S. Active vibration control of basic structures using macro fiber composites[C]//Proceedings of SPIE Vol. 7977. USA: SPIE, 2011: 1-7.[75] Anton S R, Erturk A, Inman D J. Multifunctional unmanned aerial vehicle wing spar for low-power generation and storage[J]. Journal of Aircraft, 2012, 49(1): 292-301. |
[1] | Shusheng CHEN, Muliang JIA, Yanxu LIU, Zhenghong GAO, Xinghao XIANG. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629595-629595. |
[2] | He ZHANG, Qingyang LIU, Liugang LI, Jingyao XU. Multibody system unsteady simulation technology for morphing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729421-729421. |
[3] | Xuhui ZHANG, Chunlei XIE, Sijia LIU, Ming YAN, Siyuan XING. Development needs and difficulty analysis for smart morphing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 529302-529302. |
[4] | Yufei WU, Teng LONG, Renhe SHI, Yao ZHANG. Non⁃hierarchical multi⁃model fusion order reduction based on aerodynamic and aerothermodynamic characteristics for cross⁃domain morphing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528259-528259. |
[5] | WANG Chen, YANG Yang, SHEN Xing, XIA Yuying. An equivalent strength model of corrugated panel and optimization design for morphing aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526146-526146. |
[6] | ZENG Kaichun, KOU Xiping, YANG Xinghua, YU Li, ZHA Jun. Optimization of active vibration damping structure for transonic wind tunnel test model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 224944-224944. |
[7] | RAN Maopeng, WANG Chengcai, LIU Huahua, WANG Wei, LYU Jinhu. Research status and future development of morphing aircraft control technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527449-527449. |
[8] | WEI Kepeng, HU Jian, YAO Jianyong, XING Haochen, LE Guigao. Fast terminal sliding mode control of neural networks for aeromechanical actuators [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 624540-624540. |
[9] | LIANG Shuai, YANG Lin, YANG Zhaoxu, XU Bin. Kalman filter based T-S fuzzy control for morphing aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S2): 724274-724274. |
[10] | CHENG Yuehua, JIANG Wenjian, YANG Hao, XUE Qi, LIAO He. Fault identification of actuators and sensors of satellite attitude control systems based on deep forest algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S1): 723778-723778. |
[11] | GONG Chunlin, CHI Fenghua, GU Liangxian, FANG Hai. Optimal control method for distributed morphing aircraft based on Karhunen-Loève expansion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(2): 121518-121518. |
[12] | ZHAO Tian, YANG Zhichun, LIU Hao, Kassem MOHAMMED, WANG Wei. Hysteresis and creep nonlinearities modeling and adaptive hybrid compensation control of piezoelectric stack actuators [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(12): 222308-222308. |
[13] | LIANG Li, YANG Zhichun, OUYANG Yan, WANG Wei. Optimization of piezoelectric actuator configuration on a vertical tail for buffeting control [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(10): 3035-3043. |
[14] | DONG Chaoyang, LU Yao, JIANG Weilai, WANG Qing. Fault tolerant control based on cuckoo search algorithm for a class of morphing aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(6): 2047-2054. |
[15] | YIN Weilong, SHI Qinghua, TIAN Dongkui. Design and Analysis of Transmission Mechanism with Cable Networks for Morphing Trailing-edge [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(8): 1824-1831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341