| [1] International Airline Maintenance Association. Airline Mainte-nance Cost Executive Commentary, 2023.[2] 孙见忠,王卓健,闫洪胜,等.航空预测性维修研究进展综述[J/OL].航空学报,1-24,(2024-12-02)[2025-04-14].http://kns.cnki.net/kcms/detail/11.1929.V.20241201.2025.002.html.SUN J Z, WANG Z J, YAN H S, et al. Research Advances in Aircraft Predictive Maintenance[J/OL].Acta Aeronautica et Astronautica Sinica(2024-12-02)[2025-04-14].http://kns.cnki.net/kcms/detail/11.1929.V.20241201.2025.002.html(in Chinese).[3] 牛奔,薛博文,周天薇.基于交互式细菌觅食优化算法的飞机基地维修人员调度[J].管理工程学报,2023,37(05):247-258.NIU B, XUE B W, ZHOU T W. Interactive bacterial foraging optimization algorithm for aircraft base maintenance technician scheduling[J].Journal of Industrial Engineering,2023,37(05):247-258(in Chinese).[4] IGHRAVWE D E, OKE S A. A non-zero integer non-linear pro-gramming model for maintenance workforce sizing[J]. Interna-tional Journal of Production Economics, 2014, 150: 204-214.[5] VAN DER WEIDE T, Deng Q, Santos B F. Robust long-term aircraft heavy maintenance check scheduling optimization under uncertainty[J]. Computers & Operations Research, 2022, 141: 105667.[6] DENG Q, SANTOS B F, CURRAN R. A practical dynamic pro-gramming based methodology for aircraft maintenance check scheduling optimization[J]. European Journal of Operational Re-search, 2020, 281(2): 256-273.[7] 胡小兵,赵宇勃,王瑞昕,等.基于组合优化的飞机定检任务调度优化方法研究[J].交通运输系统工程与信息,2023,23(03):214-222. HU X B, ZHAO Y B, WANG R X, et al. Optimization Method of Aircraft Regular Check Task Scheduling Based on Combinatorial Optimization[J].Journal of Transportation Sys-tems Engineering and Information Technology,2023,23(03):214-222(in Chinese).[8] PIMAPUNSRI K, WEERANANT D, RIEL A. Genetic algorithms for the resource-constrained project scheduling problem in air-craft heavy maintenance. arXiv preprint, 2022, arXiv:2208.07169.[9] CHEN G, HE W, TIAN Y, et al. Resource-constrained project scheduling with multiple states: Bi-objective optimization model and case study of aircraft maintenance[J]. Computers & Indus-trial Engineering, 2024, 191: 110169.[10] HARTMANN S, BRISKORN D. An updated survey of variants and extensions of the resource-constrained project scheduling problem[J]. European Journal of operational research, 2022, 297(1): 1-14.[11] ZHANG J, SONG X, DíAZ E. Project buffer sizing of a critical chain based on comprehensive resource tightness[J]. European Journal of Operational Research, 2016, 248(1): 174-182.[12] ZHANG J, SONG X, DíAZ E. Critical chain project buffer sizing based on resource constraints[J]. International Journal of Pro-duction Research, 2017, 55(3): 671-683.[13] LIANG Y, CUI N, HU X, et al. The integration of resource allo-cation and time buffering for bi-objective robust project schedul-ing[J]. International Journal of Production Research, 2020, 58(13): 3839-3854. [14] YILDIRIM M, FALLAHI F, BAKIR I. A Chance-Constrained Optimization Framework for Wind Farms to Manage Fleet-Level Availability in Condition Based Maintenance and Opera-tions[C]//2024 IISE Annual Conference and Expo. IISE, 2024. [15] DENG Q, SANTOS B F, CURRAN R. A practical dynamic pro-gramming based methodology for aircraft maintenance check scheduling optimization[J]. European Journal of Operational Re-search, 2020, 281(2): 256-273.[16] ZHONG T, WU C, ZHU Z, et al. Alternative Learning Particle Swarm Optimization for Aircraft Maintenance Technician Scheduling[C]//International Conference on Swarm Intelligence. Cham: Springer International Publishing, 2022: 148-159. [17] POLICELLA N. Scheduling with uncertainty: a proactive ap-proach using partial order schedules[J]. 2005. [18] KADRI R L, BOCTOR F F. An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case[J]. European Journal of Operational Research, 2018, 265(2): 454-462. [19] HERROELEN W. Generating robust project baseline sched-ules[M]//OR Tools and Applications: Glimpses of Future Tech-nologies. INFORMS, 2007: 124-144. [20] MA H, ZHANG Y, SUN S, et al. A comprehensive survey on NSGA-II for multi-objective optimization and applications[J]. Artificial Intelligence Review, 2023, 56(12): 15217-15270.[21] WANG L, ZHENG X. A knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource con-strained project scheduling problem[J]. Swarm and Evolutionary Computation, 2018, 38: 54-63. [22] CHEN R, LIANG C, GU D, et al. A multi-objective model for multi-project scheduling and multi-skilled staff assignment for IT product development considering competency evolution[J]. International Journal of Production Research, 2017, 55(21): 6207-6234. [23] YEN G G, HE Z. Performance metric ensemble for multi-objective evolutionary algorithms[J]. IEEE Transactions on Evo-lutionary Computation, 2013, 18(1): 131-144. [24] ZITZLER E, THIELE L, Laumanns M, et al. Performance as-sessment of multi-objective optimizers: An analysis and re-view[J]. IEEE Transactions on evolutionary computation, 2003, 7(2): 117-132. [25] GONCHAROV E. A hybrid heuristic algorithm for the resource-constrained project scheduling problem[J]. arXiv preprint arXiv:2502.18330, 2025.[26] 王峰,韩孟臣,赵耀宇,等.基于改进NSGA-II算法求解多目标资源受限项目调度问题[J].控制与决策,2021,36(03):669-676.DOI:10.13195/j.kzyjc.2019.0906.WANG F, HAN M C, ZHAO Y Y, et al. An improved NSGA-II algorithm for multi-objective resource-constrained project scheduling problem[J].Control and Decision, 2021,36(03):669-676(in Chinese).[27] 何立华.资源不确定条件下项目调度多目标优化研究[D].天津大学,2013. He L H. Multi-objective optimization of projectscheduling under uncertain resources[D]. Tianjin: Schoolof Management and Eco-nomics, Tianjin University, 2013:52-57(in Chinese).[28] XIAO J, WU Z, HONG X, et al. Integration ofelectromagnetism with multi-objective evolutionaryalgorithms for RCPSP[J]. Eu-ropean Journal ofOperational Research, 2016, 251(1): 22-35.[29] MANE S, SONAWANI S S, SAKHARE S. Classification prob-lem solving using multi-objective optimization approach and lo-cal search[C]//2016 International Conference on Electrical, Elec-tronics, and Optimization Techniques (ICEEOT). IEEE, 2016: 243-247. [30] ZHANG K, SHEN C, HE J, et al. Knee based multimodal multi-objective evolutionary algorithm for decision making[J]. Infor-mation Sciences, 2021, 544: 39-55.[31] YANG Z R, HAN J, WANG C D, et al. Graphlora: Structure-aware contrastive low-rank adaptation for cross-graph transfer learning[J]. arXiv preprint arXiv:2409.16670, 2024. |