Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (7): 30852.doi: 10.7527/S1000-6893.2024.30852
• Reviews •
Jianzhong SUN1(), Zhuojian WANG2, Hongsheng YAN1,3, Zhe LI2, Sizheng DUAN1, Hanchun HU1, Hongfu ZUO1
Received:
2024-06-20
Revised:
2024-07-12
Accepted:
2024-11-04
Online:
2024-12-02
Published:
2024-11-14
Contact:
Jianzhong SUN
E-mail:sunjianzhong@nuaa.edu.cn
Supported by:
CLC Number:
Jianzhong SUN, Zhuojian WANG, Hongsheng YAN, Zhe LI, Sizheng DUAN, Hanchun HU, Hongfu ZUO. Research advances in aircraft predictive maintenance[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 30852.
Table 2
Classification of model-based health monitoring methods
方法 | 特点 |
---|---|
基于观测器方法 | 具有确定性模型特征的被监测系统/过程(航空发动机[ |
奇偶空间法 | 生成残差,用于检查模型和过程输出之间的一致性(飞控作动器[ |
卡尔曼滤波器 | 包括扩展卡尔曼滤波器、无迹卡尔曼滤波器、自适应卡尔曼滤波器等(电子系统健康监测[ |
参数估计 | 在线识别过程的参数,并将其与健康条件下获得的参数进行比较(振动监测[ |
混合自动机 | 对混合系统中的突发故障和初期故障进行建模(混合系统健康监测[ |
有符号键图 | 通过捕获不同组件之间的能量和功率流来对动态系统进行建模和分析,利用其定性和定量结构特性,生成多行为预测并进行健康监测(航空发动机[ |
Table 3
Classification of data-driven health monitoring methods
类型 | 方法 | 特点 |
---|---|---|
有监督方法(正常数据和故障数据的标签已知) | SVM(支持向量机) | 找到一条线或者空间中的超平面将2组数据分开[ |
DT(决策树) | 通过对数据进行逐步的分割和判断,最终生成一个树状结构的模型,对新样本进行分类[ | |
BN(贝叶斯网络) | 概率图模型用于描述变量之间的依赖关系和概率分布,使用该模型计算给定观测数据的异常得分[ | |
深度学习方法(LSTM、CNN) | 模仿神经网络的结构和功能的数学模型,用于对函数进行估计或近似[ | |
半监督方法(只有正常数据) | 生成对抗网络(GANs) | 训练生成模型G与鉴别模型D,G学习真实数据分布并生成新数据,D在鉴别G真实性的过程中提高了自身鉴别能力[ |
变分自编码器(VAE) | 编码器从输入数据中提取其概率分布的潜在参数,解码器重构输入数据[ | |
无监督方法(数据无标签,常用于聚类、降维) | 最近邻方法,如k近邻、基于密度、离群点检测、局部相关性等 | 基于样本周围的密度、距离、连通性或局部相关性进行异常检测,根据其邻域内样本点的稀疏程度来判断是否为异常[ |
聚类方法,如高斯混合模型、局部离群因子、局部距离和连通性等 | 聚类分析是根据在数据中发现的描述对象及其关系的信息,将数据对象分组[ | |
降维方法,主成分分析、自编码器等 | 采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中[ |
Table 4
Health monitoring of aircraft airborne systems
机载系统 | 研究对象 | 方法 | 年份 | 研究机构 |
---|---|---|---|---|
空调系统 | 热交换器 | 机器学习 | 2021 | 南京航空航天大学[ |
制冷组件 | 深度学习 | 2023 | 南京航空航天大学[ | |
制冷组件 | 深度学习 | 2021 | University of Toulouse[ | |
引气系统 | 活门、预冷器等 | 深度学习 | 2021 | 南京航空航天大学[ |
电气系统 | 发电机 | 深度学习 | 2020 | University of Toulouse[ |
飞控系统 | 机械控制系统 | 机器学习 | 2021 | 西北工业大学[ |
飞行控制系统 | 基于模型 | 2018 | Politecnico di Torino[ | |
机电作动器 | 基于模型 | 2021 | University of Bordeaux[ | |
航电系统 | 航电系统传感器 | 机器学习 | 2023 | 美国甲骨文公司[ |
起落架 | 减振支柱 | 基于模型 | 2019 | 美国联合技术公司[ |
APU | 负载控制阀和燃油计量阀 | 深度学习 | 2021 | Cranfield University[ |
液压系统 | 液压油泄漏 | 深度学习 | 2020 | 南京航空航天大学[ |
航空发动机 | 气路部件 | 深度学习 | 2023 | 南京航空航天大学[ |
部附件 | 机器学习 | 2016 | Safran Aircraft Engines[ |
Table 5
Some machine learning based fault diagnosis algorithms
类型 | 方法 | 特点 |
---|---|---|
有监督方法 | 自适应提升算法(Adaboost) | 使用决策树作为弱学习器,提高了对不平衡数据的分类精度[ |
近邻成分分析(NCA),卷积神经网络(CNN) | 结合了Mel频谱图和scalogram图像的深度学习特征提取(通过CNN)和机器学习分类器[ | |
无监督方法 | 高斯混合模型(GMM)和K-means算法 | 针对那些无法获得大量历史数据的情况,使用傅里叶变换减少高频噪声,便于区分正常和异常运行状态[ |
改进的K-奇异值分解(Improved K-SVD) | 结合了稀疏表示和自学习字典技术来提高信号去噪效果和脉冲特征的突出,进而使用快速光谱相关技术进一步增强旋转故障频率的周期性特征[ | |
半监督方法 | 堆叠自编码器(SAE)和反向传播神经网络(BPNN) | 结合堆叠自编码器和反向传播神经网络进行深度学习,有效地从长期运行的振动数据中自动识别冲击响应[ |
半监督自编码器(SSAE)和Softmax分类器 | SSAE结合Softmax分类器的算法通过层叠和稀疏的自编码器自动提取深层特征,并使用Softmax分类器进行高效的故障诊断和健康状态分类[ |
Table 6
Fault diagnosis of aircraft airborne systems
机载系统 | 研究对象 | 方法 | 年份 | 研究机构 |
---|---|---|---|---|
环控系统 | 制冷组件 | 数字孪生 | 2019 | IVHM Centre, Cranfield University[ |
热交换器 | 数据驱动学习 | 2018 | University of Connecticut[ | |
循环制冷系统 | 仿真模型与数据驱动相结合 | 2023 | 上海交通大学[ | |
引气与空调系统 | 贝叶斯网络多信息融合机制 | 2019 | 南京航空航天大学[ | |
制冷组件 | 仿真模拟 | 2021 | IVHM Centre, Cranfield University[ | |
飞控系统 | 飞行控制系统 | FMEA和贝叶斯网络相结合 | 2020 | NASA Ames Research Center[ |
旋翼 | 集成统计学习模型 | 2022 | Rensselaer Polytechnic Institute[ | |
副翼 | 基于离散事件系统 | 2020 | Army Research Laboratory[ | |
飞机作动器 | 深度学习 | 2021 | 西北工业大学[ | |
液压作动器 | 机器学习 | 2020 | Politecnico di Torino[ | |
传感器 | 数据驱动方法 | 2019 | University of Perugia[ | |
液压与起落架 | 液压泵 | 基于物理模型 | 2022 | University of Business in Prague[ |
起落架收放系统 | 深度学习 | 2022 | 西北工业大学[ | |
起落架收放系统 | 机器学习与仿真模型结合 | 2018 | 中国民航大学[ | |
起落架收放系统 | 改进型模糊综合评估模型 | 2022 | 南京航空航天大学[ |
Table 7
Application of aviation RUL prediction
应用分类 | 研究对象 | 方法 | 年份 | 研究机构 |
---|---|---|---|---|
部件级 | 轴承 | 隐马尔可夫回归与深度学习模型 | 2021 | 上海大学[ |
集成经验模态分解与高斯混合模型 | 2014 | 北京航空航天大学[ | ||
时序数据分析与高斯过程回归 | 2021 | 清华大学[ | ||
机电作动器 | 快速傅里叶变换与动态参数预测 | 2015 | Politecnico di Torino[ | |
振动能量梯度预测 | 2015 | German Aerospace Center[ | ||
逐步线性回归 | 2018 | 哈尔滨工业大学[ | ||
皮托管 | 可靠性与数据驱动融合 | 2023 | 南京航空航天大学[ | |
涡轮叶片 | 代理模型 | 2017 | German Aerospace Center[ | |
贝叶斯网络 | 2015 | Technische Universitat Braunschweig[ | ||
系统级 | 空调系统 | 动态线性模型 | 2020 | 南京航空航天大学[ |
发动机 | 物理模型与数据驱动融合 | 2011 | ETH Zurich[ | |
数据驱动性能数字孪生 | 2023 | 南京航空航天大学[ | ||
APU | 动态线性模型 | 2019 | 南京航空航天大学[ | |
起落架 | 随机滤波 | 2015 | 西北工业大学[ |
Table 8
Aviation maintenance decision modelling
任务类型 | 决策对象或目标 | 研究方法 | 年份 | 研究机构 |
---|---|---|---|---|
计划维修决策 | 减少飞机A/C检查的维修总成本 | 启发式算法 | 2003 | University of Maryland[ |
减少飞机运营与维修总成本 | 贪婪算法 | 2000 | LAAS du CNRS[ | |
优化维护间隔,减少飞机停场维护 | 启发式算法 | 2010 | University of Thessaly[ | |
优化维修路径,提高飞机可用性 | 动态规划 | 2015 | Bogazici University[ | |
提高飞机利用率的同时降低维护成本 | 基于动态规划算法,开发决策支持系统 | 2021 | Delft University of Technology[ | |
预测性维修决策 | 随机失效部件基于状态的维修 | 贝叶斯更新理论与系统可靠性框图 | 2017 | Eindhoven University of Technology[ |
融合预测任务的飞机维修检查调度 | 动态规划与混合前瞻调度策略 | 2022 | Delft University of Technology[ | |
飞机机队的动态预测性维护调度 | 卷积神经网络与整数线性规划 | 2022 | Delft University of Technology[ | |
航空发动机机队寿命周期维修任务优化 | 强化学习 | 2022 | 南京航空航天大学[ |
Table 9
Predictive maintenance support platform for typical civilian aircraft
类别 | 平台名称 | 开发者 | 年份 | 特点 |
---|---|---|---|---|
主制造商 | Skywise | Airbus | 2017 | Skywise已发展成为航空业领先的开放数据平台,为超过一万架飞机提供预测性维修服务 |
Smart Link Plus | Bombardier | 2020 | 通过收集飞机关键数据,快速确定警报优先级并采取措施主动排除,提高飞机的运行效率 | |
Insight Accelerator | Boeing | 2021 | 利用人工智能和机器学习帮助航空公司规划预测性维护,快速准确地识别部件早期退化或故障,减少非计划维护 | |
系统供应商 | Honeywell Forge | Honeywell | 2019 | 分析飞机数据,提供诊断和预测性警报,减少非计划维修 |
Maintenance Insight | GE | 2019 | 提供组件健康状态分析,以便及早发现飞机和部件退化,减少计划外的维护和停机时间 | |
航空公司或 MRO | AVIATAR | Lufthansa-Technik | 2017 | 包含100多个预测模型,利用飞机实时数据预测故障,适用于空客和波音多种机型 |
飞机状态预测与维修作业管理平台(APCM) | 北京飞机维修有限公司 | 2019 | 实现了多源数据的集成和应用,包括实时故障管理、飞机系统性能预测、维修作业管理,具备基于飞机状态的维修方案制定与优化能力 | |
PROGNOS | Air France-KLM Group | 2015 | 提供A380和B747/787系统的性能监控和警报、CFM56等发动机的数据分析和故障预测 | |
飞机健康管理系统 | 厦门航空股份有限公司 | 2017 | 支持ACARS实时告警和QAR趋势告警,监控故障近百种,准确率达到95%以上,基于故障模型库,支持故障的快速处置和诊断 | |
天瞳系统 | 中国南方航空股份有限公司 | 2022 | 实现飞机技术状态跟踪(健康状态诊断分析)、故障自动报警,航行跟踪、发动机性能监控等功能,确保飞行安全,覆盖多个主流机型 |
1 | United States Government Accountability Office. Weapon system sustainment: Aircraft mission capable goals were generally not met and sustainment costs varied by aircraft:GAO-23-106217[R]. Washington,D.C.:Government Accountability Office, 2022. |
2 | PIOTROWSKI D, ROACH D, MELTON A, et al. Implementation of structural health monitoring (SHM) into an airline maintenance program[C]∥Structural Health Monitoring 2015. Destech Publications, 2015. |
3 | SUN J Z, CHEN D, LI C Y, et al. Integration of scheduled structural health monitoring with airline maintenance program based on risk analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2018, 232(1): 92-104. |
4 | SMITH M, SULCS P F, WALTHALL R, et al.Design and implementation of aircraft system health management (ASHM) utilizing existing data feeds[C]∥Condition-Based Maintenance in Aviation: The History, the Business and the Technology. Warrendale: SAE International, 2015. |
5 | 左洪福, 孙见忠, 李鑫, 等. 民用飞机预测维修建模方法及应用[M]. 北京: 科学出版社, 2020: 332-334. |
ZUO H F, SUN J Z, LI X, et al. Predictive maintenance modeling and application for commercial aircraft[M]. Beijing: Science Press, 2020: 332-334 (in Chinese). | |
6 | STANTON I, MUNIR K, IKRAM A, et al. Predictive maintenance analytics and implementation for aircraft: Challenges and opportunities[J]. Systems Engineering, 2023, 26(2): 216-237. |
7 | TEUBERT C, POHYA A A, GOROSPE G. An analysis of barriers preventing the widespread adoption of predictive and prescriptive maintenance in aviation:NASA/TM-20230000841[R]. Washington, D.C.: NASA, 2023. |
8 | United States Government Accountability Office. Military readiness actions needed to further implement predictive maintenance on weapon systems[R]. Washington, D.C.: Government Accountability Office, 2022. |
9 | 左洪福, 蔡景, 吴昊, 等. 航空维修工程学[M]. 北京: 科学出版社, 2011: 1-5. |
ZUO H F, CAI J, WU H, et al. Aviation maintenance engineering[M]. Beijing: Science Press, 2011: 1-5 (in Chinese). | |
10 | 国家市场监督管理总局, 国家标准化管理委员会. 智能服务 预测性维护 通用要求: [S]. 北京: 中国标准出版社, 2021. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Intelligent service-Predictive maintenance-General requirements: [S]. Beijing: Standards Press of China, 2021 (in Chinese). | |
11 | GAO Z W, DAI X W, BREIKIN T, et al. Novel parameter identification by using a high-gain observer with application to a gas turbine engine[J]. IEEE Transactions on Industrial Informatics, 2008, 4(4): 271-279. |
12 | ODENDAAL H M, JONES T. Actuator fault detection and isolation: An optimised parity space approach[J]. Control Engineering Practice, 2014, 26: 222-232. |
13 | HWANG W, HUH K. Fault detection and estimation for electromechanical brake systems using parity space approach[J]. Journal of Dynamic Systems, Measurement, and Control, 2015, 137(1): 014504. |
14 | LALL P, LOWE R, GOEBEL K. Prognostics health management of electronic systems under mechanical shock and vibration using Kalman filter models and metrics[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4301-4314. |
15 | DÖHLER M, MEVEL L. Subspace-based fault detection robust to changes in the noise covariances[J]. Automatica, 2013, 49(9): 2734-2743. |
16 | ZHAO F, KOUTSOUKOS X, HAUSSECKER H, et al. Monitoring and fault diagnosis of hybrid systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2005, 35(6): 1225-1240. |
17 | MIR-HAIDARI S E, BEHDINAN K. Structural health monitoring of aeroengines using transmissibility and bond graph methodology[M]. New York: Wiley, 2021. |
18 | XUE Y, WILLIAMS D P, QIU H, et al. Classification with imperfect labels for fault prediction[C]∥Proceedings of the First International Workshop on Data Mining for Service and Maintenance. New York: ACM, 2011: 12-16. |
19 | GERDES M, GALAR D, SCHOLZ D. Genetic algorithms and decision trees for condition monitoring and prognosis of A320 aircraft air conditioning[J]. Insight - Non-Destructive Testing and Condition Monitoring, 2017, 59(8): 424-433. |
20 | YU J B. A nonlinear probabilistic method and contribution analysis for machine condition monitoring[J]. Mechanical Systems and Signal Processing, 2013, 37(1-2): 293-314. |
21 | NING S G, SUN J Z, LIU C, et al. Applications of deep learning in big data analytics for aircraft complex system anomaly detection[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2021, 235(5): 923-940. |
22 | 张鹏, 田子都, 王浩. 基于改进生成对抗网络的飞参数据异常检测方法[J]. 浙江大学学报(工学版), 2022, 56(10): 1967-1976, 1986. |
ZHANG P, TIAN Z D, WANG H. Flight parameter data anomaly detection method based on improved generative adversarial network[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(10): 1967-1976, 1986 (in Chinese). | |
23 | CORAÇA E M, FERREIRA J V, NÓBREGA E G O. An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models[J]. Reliability Engineering & System Safety, 2023, 231: 109025. |
24 | 李泱, 李德文, 蔡景, 等. 基于SFA-LOF-LDD的航空发动机异常检测方法研究[J]. 机床与液压, 2023, 51(13): 189-197, 205. |
LI Y, LI D W, CAI J, et al. Research on abnormal detection method of aero engine based on SFA-LOF-LDD[J]. Machine Tool & Hydraulics, 2023, 51(13): 189-197, 205 (in Chinese). | |
25 | 赵剑, 齐凯, 高振兴. 基于QAR数据聚类分析的航班异常检测研究[J]. 航空计算技术, 2018, 48(2): 52-56. |
ZHAO J, QI K, GAO Z X. Study of flight abnormal detection based on QAR data cluster analysis[J]. Aeronautical Computing Technique, 2018, 48(2): 52-56 (in Chinese). | |
26 | HRÚZ M, PECHO P, SOCHA V, et al. Use of the principal component analysis for classification of aircraft components failure conditions using vibrodiagnostics[J]. Transportation Research Procedia, 2021, 59: 166-173. |
27 | BASORA L, BRY P, OLIVE X, et al. Aircraft fleet health monitoring with anomaly detection techniques[J]. Aerospace, 2021, 8(4): 103. |
28 | SUN J Z, LI C Y, LIU C, et al. A data-driven health indicator extraction method for aircraft air conditioning system health monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(2): 409-416. |
29 | LIU C, SUN J Z, LIU H, et al. Complex engineered system health indexes extraction using low frequency raw time-series data based on deep learning methods[J]. Measurement, 2020, 161: 107890. |
30 | ZHU X Y, SUN J Z, HU H C, et al. A semi-supervised Siamese network for complex aircraft system fault detection with limited labeled fault samples[J]. Eksploatacja i Niezawodność-Maintenance and Reliability, 2023, 25(4): 174382. |
31 | GUO Y H, MA C B, DONG X, et al. A novel health indicator based on hysteresis loop for health prediction of flight control systems[J]. Measurement, 2021, 186: 110076. |
32 | ZOLGHADRI A. The challenge of advanced model-based FDIR for real-world flight-critical applications[J]. Engineering Applications of Artificial Intelligence, 2018, 68: 249-259. |
33 | BERRI P C, DALLA VEDOVA M D L, MAININI L. Computational framework for real-time diagnostics and prognostics of aircraft actuation systems[J]. Computers in Industry, 2021, 132: 103523. |
34 | HAIDER S. Overview of prognostics and health management for landing gear maintenance[C]∥2019 Annual Reliability and Maintainability Symposium (RAMS). Piscataway: IEEE Press, 2019: 1-7. |
35 | YAN H S, SUN J Z, ZUO H F. Anomaly detection based on multivariate data for the aircraft hydraulic system[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2021, 235(5): 593-605. |
36 | SKLIROS C, ALI F, JENNIONS I. Fault simulations and diagnostics for a boeing 747 auxiliary power unit[J]. Expert Systems with Applications, 2021, 184: 115504. |
37 | WANG F Y, SUN J Z, LIU X C, et al. Aircraft auxiliary power unit performance assessment and remaining useful life evaluation for predictive maintenance[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2020, 234(6): 804-816. |
38 | BOULFANI F, GENDRE X, RUIZ-GAZEN A, et al. Anomaly detection for aircraft electrical generator using machine learning in a functional data framework[C]∥2020 Global Congress on Electrical Engineering (GC-ElecEng). Piscataway: IEEE Press, 2020: 27-32. |
39 | GERDES M, GROSS K, WANG G C. Electronic prognostics innovations for applications to aerospace systems[C]∥2023 IEEE Aerospace Conference. Piscataway: IEEE Press, 2023: 1-9. |
40 | SUN J Z, ZUO H F, LIANG K, et al. Bayesian network-based multiple sources information fusion mechanism for gas path analysis[J]. Journal of Propulsion and Power, 2016, 32(3): 611-619. |
41 | BASTARD G, LACAILLE J, COUPARD J, et al. Engine health management in safran aircraft engines[C]∥Annual Conference of the PHM Society, 2016. |
42 | 孙见忠, 解志峰, 闫洪胜, 等. 民机PHM预测维修模式在空调系统的应用[J]. 南京航空航天大学学报, 2021, 53(6): 952-964. |
SUN J Z, XIE Z F, YAN H S, et al. Application of PHM predictive maintenance on aircraft air conditioning system[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(6): 952-964 (in Chinese). | |
43 | VRABIČ R, KOZJEK D, BUTALA P. Knowledge elicitation for fault diagnostics in plastic injection moulding: A case for machine-to-machine communication[J]. CIRP Annals, 2017, 66(1): 433-436. |
44 | TRAN T, LUNDGREN J. Drill fault diagnosis based on the scalogram and mel spectrogram of sound signals using artificial intelligence[J]. IEEE Access, 2020, 8: 203655-203666. |
45 | AMRUTHNATH N, GUPTA T. Fault class prediction in unsupervised learning using model-based clustering approach[C]∥2018 International Conference on Information and Computer Technologies (ICICT). Piscataway: IEEE Press, 2018: 5-12. |
46 | WANG H C, DU W L. Fast spectral correlation based on sparse representation self-learning dictionary and its application in fault diagnosis of rotating machinery[J]. Complexity, 2020, 2020: 9857839. |
47 | LUO B, WANG H T, LIU H Q, et al. Early fault detection of machine tools based on deep learning and dynamic identification[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 509-518. |
48 | XU Y, SUN Y M, LIU X L, et al. A digital-twin-assisted fault diagnosis using deep transfer learning[J]. IEEE Access, 2019, 7: 19990-19999. |
49 | CHOWDHURY S H, ALI F, JENNIONS I K. A methodology for the experimental validation of an aircraft ECS digital twin targeting system level diagnostics[C]∥Annual Conference of the PHM Society, 2019. |
50 | PALMER K A, BOLLAS G M. Analysis of transient data in test designs for active fault detection and identification[J]. Computers & Chemical Engineering, 2019, 122: 93-104. |
51 | LI Y H, HU H T, LEI R. Performance simulation and diagnosis of faulty states in air-cycle refrigeration systems in civil aircrafts[J]. International Journal of Refrigeration, 2023, 156: 232-242. |
52 | LIU C, SUN J Z, WANG F Y, et al. Bayesian network method for fault diagnosis of civil aircraft environment control system[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2020, 234(5): 662-674. |
53 | EZHILARASU C M, SKAF Z, JENNIONS I K. A generalised methodology for the diagnosis of aircraft systems[J]. IEEE Access, 2021, 9: 11437-11454. |
54 | KULKARNI C S, CORBETTA M, ROBINSON E. Enhancing fault isolation for health monitoring of electric aircraft propulsion by embedding failure mode and effect analysis into Bayesian networks[C]∥Annual Conference of the PHM Society, 2020. |
55 | DUTTA A, NIEMIEC R, GANDHI F, et al. Time-series assisted machine learning framework for probabilistic rotor fault diagnosis on multicopters under varying operating conditions[C]∥AIAA SCITECH 2022 Forum. Reston: AIAA, 2022. |
56 | WHITE A, KARIMODDINI A. Event-based diagnosis of flight maneuvers of a fixed-wing aircraft[J]. Reliability Engineering & System Safety, 2020, 193: 106609. |
57 | JIA Z, LIU Z B, CAI Y Y. A novel fault diagnosis method for aircraft actuator based on ensemble model[J]. Measurement, 2021, 176: 109235. |
58 | NESCI A, DE MARTIN A, JACAZIO G, et al. Detection and prognosis of propagating faults in flight control actuators for helicopters[J]. Aerospace, 2020, 7(3): 20. |
59 | CARTOCCI N, CROCETTI F, COSTANTE G, et al. Data-driven sensor fault diagnosis based on nonlinear additive models and local fault sensitivity[C]∥2021 20th International Conference on Advanced Robotics (ICAR). Piscataway: IEEE Press, 2021: 750-756. |
60 | CASCIANELLI S, CROCETTI F, COSTANTE G, et al. Data-based design of robust fault isolation residuals using LASSO optimization[C]∥2019 International Conference on Control, Automation and Diagnosis (ICCAD). Piscataway: IEEE Press, 2019: 1-6. |
61 | CARTOCCI N, COSTANTE G, NAPOLITANO M R, et al. PCA methods and evidence based filtering for robust aircraft sensor fault diagnosis[C]∥2020 28th Mediterranean Conference on Control and Automation (MED). Piscataway: IEEE Press, 2020: 550-555. |
62 | CARTOCCI N, NAPOLITANO M R, COSTANTE G, et al. A robust data-driven fault diagnosis scheme based on recursive dempster-shafer combination rule[C]∥2021 29th Mediterranean Conference on Control and Automation (MED). Piscataway: IEEE Press, 2021: 1070-1075. |
63 | CARTOCCI N, NAPOLITANO M R, COSTANTE G, et al. A comprehensive case study of data-driven methods for robust aircraft sensor fault isolation[J]. Sensors, 2021, 21(5): 1645. |
64 | CARTOCCI N, NAPOLITANO M R, COSTANTE G, et al. Aircraft robust data-driven multiple sensor fault diagnosis based on optimality criteria[J]. Mechanical Systems and Signal Processing, 2022, 170: 108668. |
65 | SLOBODA A, PIĽA J, SLOBODA O, et al. Vibrodiagnostic of aircraft hydraulic emergency hydrogenerator NP 27T[J]. Engineering Failure Analysis, 2022, 138: 106337. |
66 | CHEN J, XU Q S, GUO Y C, et al. Aircraft landing gear retraction/extension system fault diagnosis with 1-D dilated convolutional neural network[J]. Sensors, 2022, 22(4): 1367. |
67 | TANG J, LIU Q, HU J W, et al. Leakage fault diagnosis method of aircraft landing gear hydraulic cylinder based on wavelet packet[J]. The Journal of Engineering, 2019, 2019(13): 427-431. |
68 | DUAN S X, LI Y J, CAO Y Y, et al. Health assessment of landing gear retraction/extension hydraulic system based on improved risk coefficient and FCE model[J]. Applied Sciences, 2022, 12(11): 5409. |
69 | PECHT M G. Prognostics and health management of electronics[M]. New Jersey: Wiley, 2008. |
70 | WANG W B, CARR M, XU W J, et al. A model for residual life prediction based on Brownian motion with an adaptive drift[J]. Microelectronics Reliability, 2011, 51(2): 285-293. |
71 | SUN J Z, ZUO H F, WANG W B, et al. Prognostics uncertainty reduction by fusing on-line monitoring data based on a state-space-based degradation model[J]. Mechanical Systems and Signal Processing, 2014, 45(2): 396-407. |
72 | WANG W. A model to determine the optimal critical level and the monitoring intervals in condition-based maintenance[J]. International Journal of Production Research, 2000, 38(6): 1425-1436. |
73 | BAE S J, KVAM P H. A nonlinear random-coefficients model for degradation testing[J]. Technometrics, 2004, 46(4): 460-469. |
74 | BAE S J, KUO W, KVAM P H. Degradation models and implied lifetime distributions[J]. Reliability Engineering & System Safety, 2007, 92(5): 601-608. |
75 | LOUTAS T H, ROULIAS D, GEORGOULAS G. Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic E-support vectors regression[J]. IEEE Transactions on Reliability, 2013, 62(4): 821-832. |
76 | ZAIDAN M A, HARRISON R F, MILLS A R, et al. Bayesian Hierarchical Models for aerospace gas turbine engine prognostics[J]. Expert Systems with Applications, 2015, 42(1): 539-553. |
77 | LIU R X, SONG J Z, LUO P J, et al. Analysis and prediction of temperature of an assembly frame for aircraft based on BP neural network[J]. International Journal of Computational Materials Science and Engineering, 2023, 12(3): 2350006. |
78 | ORCHARD M E, VACHTSEVANOS G J. A particle-filtering approach for on-line fault diagnosis and failure prognosis[J]. Transactions of the Institute of Measurement and Control, 2009, 31(3-4): 221-246. |
79 | SUN J Z, ZUO H F, WANG W B, et al. Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance[J]. Mechanical Systems and Signal Processing, 2012, 28: 585-596. |
80 | WANG W B. A two-stage prognosis model in condition based maintenance[J]. European Journal of Operational Research, 2007, 182(3): 1177-1187. |
81 | GAO S H, XIONG X, ZHOU Y F, et al. Bearing remaining useful life prediction based on a scaled health indicator and a LSTM model with attention mechanism[J]. Machines, 2021, 9(10): 238. |
82 | 王付广, 李伟, 郑近德, 等. 基于多频率尺度模糊熵和ELM的滚动轴承剩余寿命预测[J]. 噪声与振动控制, 2018, 38(1): 188-192. |
WANG F G, LI W, ZHENG J D, et al. Prediction of remaining life of rolling bearings based on multi-frequency scale fuzzy entropy and ELM[J]. Noise and Vibration Control, 2018, 38(1): 188-192 (in Chinese). | |
83 | HONG S, WANG B Q, LI G Q, et al. Performance degradation assessment for bearing based on ensemble empirical mode decomposition and Gaussian mixture model[J]. Journal of Vibration and Acoustics, 2014, 136(6): 061006. |
84 | WANG X, WANG T Y, MING A B, et al. Deep spatiotemporal convolutional-neural-network-based remaining useful life estimation of bearings[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 62. |
85 | GIESECKE D, WEHKING M, FRIEDRICHS J, et al. A method for forecasting the condition of several HPT parts by using Bayesian belief networks[C]∥ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: ASME, 2015. |
86 | VAN ENKHUIZEN M J, DRESBACH C, REH S, et al. Efficient lifetime prediction of high pressure turbine blades in real life conditions[C]∥ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017. |
87 | 李春华, 孙见忠, 陆纪龙. 面向运维的HPT叶片寿命数字孪生建模方法[J]. 航空学报, 2024, 45(21): 629385. |
LI C H, SUN J Z, LU J L. Maintenance-oriented approach for HPT blade life digital twin modeling[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 629385 (in Chinese) | |
88 | CAO Y Y, WANG J, YU Y P, et al. Failure prognosis for electro-mechanical actuators based on improved SMO-SVR method[C]∥2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). Piscataway: IEEE Press, 2016: 1180-1185. |
89 | BODDEN D S, CLEMENTS N S, SCHLEY B, et al. Seeded failure testing and analysis of an electro-mechanical actuator[C]∥2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-8. |
90 | ISMAIL M A, SAWALHI N, PHAM T. Quantifying bearing fault severity using time synchronous averaging jerk energy[C]∥ICSV22. 2015: 12-16. |
91 | BYINGTON C S, WATSON M, EDWARDS D, et al. A model-based approach to prognostics and health management for flight control actuators[C]∥2004 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2004: 3551-3562. |
92 | DALLA VEDOVA M D L, MAGGIORE P, PACE L, et al. Evaluation of the correlation coefficient as a prognostic indicator for electromechanical servomechanism failures[J]. International Journal of Prognostics and Health Management, 2015, 6(1): 11-13. |
93 | ZHANG Y J, PENG X Y, PENG Y, et al. Weighted bagging gaussion process regression to predict remaining useful life of electro-mechanical actuator[C]∥2016 Prognostics and System Health Management Conference (PHM-Chengdu). Piscataway: IEEE Press, 2016: 1-6. |
94 | PENG Y, ZHANG Y J, LIU D T, et al. Degradation estimation using feature increment stepwise linear regression for PWM inverter of electro-mechanical actuator[J]. Microelectronics Reliability, 2018, 88: 514-518. |
95 | WANG B W, SUN J Z, CHEN D, et al. A cumulative exposure model for remaining useful life prediction of pitot tube based on dynamic operating data[J]. Quality and Reliability Engineering International, 2023, 39(4): 1518-1531. |
96 | KHORASGANI H, BISWAS G, SANKARARAMAN S. Methodologies for system-level remaining useful life prediction[J]. Reliability Engineering & System Safety, 2016, 154: 8-18. |
97 | SUN J Z, WANG F Y, NING S G. Aircraft air conditioning system health state estimation and prediction for predictive maintenance[J]. Chinese Journal of Aeronautics, 2020, 33(3): 947-955. |
98 | ARIAS CHAO M, KULKARNI C, GOEBEL K, et al. Fusing physics-based and deep learning models for prognostics[J]. Reliability Engineering & System Safety, 2022, 217: 107961. |
99 | SUN J Z, YAN Z C, HAN Y, et al. Deep learning framework for gas turbine performance digital twin and degradation prognostics from airline operator perspective[J]. Reliability Engineering & System Safety, 2023, 238: 109404. |
100 | CHEN J, MA C B, SONG D. Multiple failure prognosis of landing gear retraction/extension system based on H∞ filtering[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(8): 1543-1555. |
101 | BALABAN E, SAXENA A, GOEBEL K, et al. Experimental data collection and modeling for nominal and fault conditions on electro-mechanical actuators[C]∥Annual Conference of the PHM Society, 2009. |
102 | SENTURK C, KAVSAOGLU M S, NIKBAY M. Optimization of aircraft utilization by reducing scheduled maintenance downtime[C]∥10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2010. |
103 | ANDRADE P, SILVA C, RIBEIRO B, et al. Aircraft maintenance check scheduling using reinforcement learning[J]. Aerospace, 2021, 8(4): 113. |
104 | CLARE J, KOUROUSIS K I. Learning from incidents in aircraft maintenance and continuing airworthiness management: A systematic review[J]. Journal of Advanced Transportation, 2021, 2021(1): 8852932. |
105 | SRIRAM C, HAGHANI A. An optimization model for aircraft maintenance scheduling and re-assignment[J]. Transportation Research Part A: Policy and Practice, 2003, 37(1): 29-48. |
106 | MOUDANI W EL, MORA-CAMINO F. A dynamic approach for aircraft assignment and maintenance scheduling by airlines[J]. Journal of Air Transport Management, 2000, 6(4): 233-237. |
107 | MATTILA V, VIRTANEN K. A simulation-based optimization model to schedule periodic maintenance of a fleet of aircraft[C]∥2005 European Simulation and Modelling Conference, 2005. |
108 | KOZANIDIS G. Flight and maintenance planning of military aircraft for maximum fleet availability[J]. Military Operations Research, 2010, 15(1): 1-11. |
109 | BAŞDERE M, BILGE Ü. Operational aircraft maintenance routing problem with remaining time consideration[J]. European Journal of Operational Research, 2014, 235(1): 315-328. |
110 | FUKUNAGA A S, KORF R E. Bin completion algorithms for multicontainer packing, knapsack, and covering problems[J]. Journal of Artificial Intelligence Research, 2007, 28(1): 393-429. |
111 | BOHLIN M. A Study of combinatorial optimization problems in industrial computer systems[D]. Vasteras: Märlardalen University, 2010. |
112 | DENG Q C, SANTOS B F, CURRAN R. A practical dynamic programming based methodology for aircraft maintenance check scheduling optimization[J]. European Journal of Operational Research, 2020, 281(2): 256-273. |
113 | DENG Q C, SANTOS B F, VERHAGEN W J C. A novel decision support system for optimizing aircraft maintenance check schedule and task allocation[J]. Decision Support Systems, 2021, 146: 113545. |
114 | DAENENS S. Assessing the impact of condition-based maintenance on airline maintenance operations[D]. Delft : Delft University of Technology, 2021. |
115 | ALASWAD S, XIANG Y S. A review on condition-based maintenance optimization models for stochastically deteriorating system[J]. Reliability Engineering & System Safety, 2017, 157: 54-63. |
116 | WALTER G, FLAPPER S D. Condition-based maintenance for complex systems based on current component status and Bayesian updating of component reliability[J]. Reliability Engineering & System Safety, 2017, 168: 227-239. |
117 | HÖLZEL N, SCHRÖDER C, SCHILLING T, et al. A maintenance packaging and scheduling optimization method for future aircraft[C]∥Air Transport & Operations Symposium, 2012. |
118 | DENG Q, SANTOS B E. A stochastic aircraft maintenance and crew scheduling problem with multiple check types and aircraft availability constraints[J]. European Journal of Operational Research, 2022, 299(2): 814-833. |
119 | TSEREMOGLOU I, VAN KESSEL P J, SANTOS B F. A comparative study of optimization models for condition-based maintenance scheduling of an aircraft fleet[J]. Aerospace, 2023, 10(2): 120. |
120 | VAN KESSEL P J, FREEMAN F C, SANTOS B F. Airline maintenance task rescheduling in a disruptive environment[J]. European Journal of Operational Research, 2023, 308(2): 605-621. |
121 | TSEREMOGLOU I, SANTOS B F. Condition-based maintenance scheduling of an aircraft fleet under partial observability: A deep reinforcement learning approach[J]. Reliability Engineering & System Safety, 2024, 241: 109582. |
122 | DE PATER I, REIJNS A, MITICI M. Alarm-based predictive maintenance scheduling for aircraft engines with imperfect remaining useful life prognostics[J]. Reliability Engineering & System Safety, 2022, 221: 108341. |
123 | 闫洪胜. 基于运行数据的民机维修优化方法及关键技术研究[D]. 南京: 南京航空航天大学, 2021. |
YAN H S. Research on maintenance optimization methods and key technologies of civil aircraft based on operation data[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
124 | TSEREMOGLOU I, BIEBER M, SANTOS B F, et al. The impact of prognostic uncertainty on condition-based maintenance scheduling: An integrated approach[C]∥AIAA AVIATION 2022 Forum. Reston: AIAA, 2022. |
125 | ReMAP. Multi-stage maintenance management decision support tool[R]. European Union’s Horizon 2020 Research and Innovation Program, 2021. |
126 | THOMPSON N, BLOND K, CLARK A, et al. MBSE applications to optimize predictive maintenance scheduling in military aviation[C]∥2023 IEEE Aerospace Conference. Piscataway: IEEE Press, 2023: 1-9. |
127 | BLOND K, HIMSCHOOT A, KLEIN E, et al. Adapting commercial best practices to U.S. air force maintenance scheduling[J]. Aerospace, 2023, 10(1): 61. |
128 | IATA. From aircraft health monitoring to aircraft health management white paper on AHM[EB/OL]. (2022-01-01). . |
129 | International Maintenance Review Board Policy Board. IP92: Definition of Structural Health Monitoring (SHM)/Addition to MSG-3[EB/OL]. (2007-01-01), . |
130 | International Maintenance Review Board Policy Board. IP 180: Aircraft Health Monitoring (AHM) integration in MSG-3[EB/OL]. (2018-01-01). , 2018. |
131 | International SAE. Guidelines for implementation of structural health monitoring on fixed wing aircraft: SAE ARP 6461-2013 (SAE ARP6461-2013) [S]. Warrendale: SAE International, 2013. |
132 | International SAE. Structural health monitoring considerations and guidance specific to rotorcraft: SAE AIR6892 [S]. Warrendale: SAE International, 2020. |
133 | HARRISON M. Big data: The race is on! But what is the end goal?[C]∥14th Maintenance Cost Conference, 2018. |
134 | Boeing. Predictive maintenance-Insight accelerator |Boeing Services [EB/OL]. (2023-11-28). . |
135 | BERNARD W, HOFFMANN A. SKYWISE-Big data platform as a foundation of airlines predictive and health monitoring[C]∥PHM Society Asia-Pacific Conference,2023. |
136 | Lufthansa Industry Solutions. Advancing the future of predictive maintenance [EB/OL]. (2023-12-12). . |
137 | 李磊, 李明宇, 赵昶升, 等. 飞机健康管理系统告警等级调整方法研究[J]. 航空维修与工程, 2019(11): 50-53. |
LI L, LI M Y, ZHAO C S, et al. Research on alert grade adjustment method of aircraft health management system[J]. Aviation Maintenance & Engineering, 2019(11): 50-53 (in Chinese). | |
138 | 李欣. 南方航空飞机健康管理系统发展策略研究[J]. 航空维修与工程, 2022(9): 20-23. |
LI X. Research on development strategy of aircraft health management system of China southern airlines[J]. Aviation Maintenance & Engineering, 2022(9): 20-23 (in Chinese). | |
139 | REGNIER E, HUDGENS B. Condition-based maintenance implementation and potential in USMC ground transport: NPS-DDS-23-001[R]. Monterey: Department of Defense Management Naval Postgraduate School, 2022. |
140 | Inspector General of U.S. Department of Defense. Audit of the Department of Defense’s implementation of predictive maintenance strategies to support weapon system sustainment [S]. Arlington: Inspector General, Department of Defense, 2022. |
141 | TEUBERT C, POHYA A A, GOROSPE G. An analysis of barriers preventing the widespread adoption of predictive and prescriptive maintenance in aviation[R]. Washington, D.C.: NASA,2023. |
[1] | JIANG Xiuhong, DUAN Fuhai, LI Yufeng. Predictive maintenance strategy for complex redundant system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(11): 3666-3677. |
[2] | YE Zhi-feng;SUN Jian-guo. PROBABILISTIC NEURAL NETWORKS BASED ENGINE FAULT DIAGNOSIS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2002, 23(2): 155-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341