Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (21): 532380.doi: 10.7527/S1000-6893.2025.32380
• Special Issue: 60th Anniversary of Aircraft Strength Research Institute of China • Previous Articles
Kai LIU1, Fangli WANG2, Binqi CHEN3, Xiangming CHEN4, Zishi SHEN4, Mingbo TONG1(
)
Received:2025-06-05
Revised:2025-06-17
Accepted:2025-07-01
Online:2025-07-04
Published:2025-07-03
Contact:
Mingbo TONG
E-mail:tongw@nuaa.edu.cn
Supported by:CLC Number:
Kai LIU, Fangli WANG, Binqi CHEN, Xiangming CHEN, Zishi SHEN, Mingbo TONG. Failure behavior analysis of variable-stiffness composite open-hole plates based on an anisotropic phase-field model[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(21): 532380.
| [1] | ASYRAF M R M, ILYAS R A, SAPUAN S M, et al. Advanced composite in aerospace applications: opportunities, challenges, and future perspective[M]∥Advanced Composites in Aerospace Engineering Applications. Cham: Springer International Publishing, 2022: 471-498. |
| [2] | 王显峰, 阳铭广, 刘琛, 等. 变刚度复合材料层合板研究进展[J]. 南京航空航天大学学报, 2024, 56(1): 17-30. |
| WANG X F, YANG M G, LIU C, et al. Research progress of variable stiffness composite laminates[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2024, 56(1): 17-30 (in Chinese). | |
| [3] | ALMEIDA J H S, BITTRICH L, SPICKENHEUER A. Improving the open-hole tension characteristics with variable-axial composite laminates: Optimization, progressive damage modeling and experimental observations[J]. Composites Science and Technology, 2020, 185: 107889. |
| [4] | 朱伟东, 张笑, 齐德胜, 等. 变刚度复合材料开孔板拉伸行为数值模拟及试验验证[J]. 复合材料学报, 2018, 35(3): 599-606. |
| ZHU W D, ZHANG X, QI D S, et al. Numerical simulation and experiment validation of variable stiffness composite laminates with open holes under unidirectional tension[J]. Acta Materiae Compositae Sinica, 2018, 35(3): 599-606 (in Chinese). | |
| [5] | MALAKHOV A V, POLILOV A N, ZHANG J K, et al. A modeling method of continuous fiber paths for additive manufacturing (3D printing) of variable stiffness composite structures[J]. Applied Composite Materials, 2020, 27(3): 185-208. |
| [6] | GÜRDAL Z, TATTING B F, WU C K. Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 911-922. |
| [7] | SUGIYAMA K, MATSUZAKI R, MALAKHOV A V, et al. 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber[J]. Composites Science and Technology, 2020, 186: 107905. |
| [8] | JOSHI S P, SUN C T. Impact induced fracture in a laminated composite[J]. Journal of Composite Materials, 1985, 19(1): 51-66. |
| [9] | ALBAZZAN M A, HARIK R, TATTING B F, et al. Efficient design optimization of nonconventional laminated composites using lamination parameters: A state of the art[J]. Composite Structures, 2019, 209: 362-374. |
| [10] | HAO P, YUAN X J, LIU C, et al. An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 339: 205-238. |
| [11] | AMBATI M, GERASIMOV T, DE LORENZIS L. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405. |
| [12] | WU J Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure[J]. Journal of the Mechanics and Physics of Solids, 2017, 103: 72-99. |
| [13] | ZHANG P, HU X F, BUI T Q, et al. Phase field modeling of fracture in fiber reinforced composite laminate[J]. International Journal of Mechanical Sciences, 2019, 161-162: 105008. |
| [14] | YU Y F, HOU C, ZHAO M Y. A unified anisotropic phase field model for progressive failure of fiber-reinforced composite materials[J]. Journal of the Mechanics and Physics of Solids, 2025, 197: 106063. |
| [15] | BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797-826. |
| [16] | FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342. |
| [17] | GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 1921, 221(582-593): 163-198. |
| [18] | AMOR H, MARIGO J J, MAURINI C. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1209-1229. |
| [19] | MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45-48): 2765-2778. |
| [20] | CHENG Z Q, LIU H, TAN W. Advanced computational modelling of composite materials[J]. Engineering Fracture Mechanics, 2024, 305: 110120. |
| [21] | MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311. |
| [22] | KUMAR A, SAIN T. Phase field-based cohesive zone approach to model delamination in fiber-reinforced polymer composites[J]. Composite Structures, 2024, 329: 117751. |
| [23] | ALESSI R, VIDOLI S, DE LORENZIS L. A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case[J]. Engineering Fracture Mechanics, 2018, 190: 53-73. |
| [24] | CARRARA P, AMBATI M, ALESSI R, et al. A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112731. |
| [25] | TANG W, YI M, CHEN L Q, et al. Classical fatigue theory informed phase-field model for high-cycle fatigue life and fatigue crack growth[J]. Engineering Fracture Mechanics, 2024, 306: 110212. |
| [26] | MEHRMASHHADI J, BAHADORI M, BOBARU F. On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass[J]. Engineering Fracture Mechanics, 2020, 240: 107355. |
| [27] | MARTÍNEZ-PAÑEDA E, GOLAHMAR A, NIORDSON C F. A phase field formulation for hydrogen assisted cracking[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 342: 742-761. |
| [28] | HUBER W, ASLE ZAEEM M. Length scale insensitive phase-field fracture methodology for brittle and ductile materials[J]. Theoretical and Applied Fracture Mechanics, 2024, 133: 104500. |
| [29] | BLEYER J, ALESSI R. Phase-field modeling of anisotropic brittle fracture including several damage mechanisms[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 336: 213-236. |
| [30] | HIRSHIKESH, NATARAJAN S, ANNABATTULA R K. Modeling crack propagation in variable stiffness composite laminates using the phase field method[J]. Composite Structures, 2019, 209: 424-433. |
| [31] | CLAYTON J D, KNAP J. Phase field modeling of directional fracture in anisotropic polycrystals[J]. Computational Materials Science, 2015, 98: 158-169. |
| [32] | NGUYEN T T, RÉTHORÉ J, BAIETTO M C. Phase field modelling of anisotropic crack propagation[J]. European Journal of Mechanics-A/Solids, 2017, 65: 279-288. |
| [33] | ZHANG P, YAO W A, HU X F, et al. An explicit phase field model for progressive tensile failure of composites[J]. Engineering Fracture Mechanics, 2021, 241: 107371. |
| [34] | PAN Z Z, ZHANG L W, LIEW K M. A phase-field framework for failure modeling of variable stiffness composite laminae[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114192. |
| [35] | 叶辉, 李清原, 闫康康. 变刚度复合材料层合板的力学性能[J]. 吉林大学学报(工学版), 2020, 50(3): 920-928. |
| YE H, LI Q Y, YAN K K. Mechanical properties of variable-stiffness carbon fiber composite laminates[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 920-928 (in Chinese). | |
| [36] | 李阳, 牛雪娟, 潘文峰. 含中心孔复合材料变刚度板孔边应力解析法分析[J]. 固体火箭技术, 2018, 41(1): 84-88, 129. |
| LI Y, NIU X J, PAN W F. Analytical approach of hole-edge stress for composite variable stiffness plate with a center hole[J]. Journal of Solid Rocket Technology, 2018, 41(1): 84-88, 129 (in Chinese). | |
| [37] | PARNAS L, ORAL S, CEYHAN Ü. Optimum design of composite structures with curved fiber courses[J]. Composites Science and Technology, 2003, 63(7): 1071-1082. |
| [38] | PHAM K, AMOR H, MARIGO J J, et al. Gradient damage models and their use to approximate brittle fracture[J]. International Journal of Damage Mechanics, 2011, 20(4): 618-652. |
| [39] | 吴建营. 固体结构损伤破坏统一相场理论、算法和应用[J]. 力学学报, 2021, 53(2): 301-329. |
| WU J Y. On the unified phase-field theory for damage and failure in solids and structures: Theoretical and numerical aspects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301-329 (in Chinese). | |
| [40] | RIDHA M, WANG C H, CHEN B Y, et al. Modelling complex progressive failure in notched composite laminates with varying sizes and stacking sequences[J]. Composites Part A: Applied Science and Manufacturing, 2014, 58: 16-23. |
| [41] | ZHANG P, HU X F, WANG X Y, et al. An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus[J]. Engineering Fracture Mechanics, 2018, 204: 268-287. |
| [42] | MOLNÁR G, GRAVOUIL A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[J]. Finite Elements in Analysis and Design, 2017, 130: 27-38. |
| [43] | CAHILL L M A, NATARAJAN S, BORDAS S P A, et al. An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae[J]. Composite Structures, 2014, 107: 119-130. |
| [1] | Hao QIN, Qiang LIU, Rong JIANG, Yingdong SONG, Qiang ZHANG, Jiantao LIU, Jian DENG, Tianjian LU. Dwell-fatigue crack growth behavior of FGH4108 alloy at high temperature [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(21): 532364-532364. |
| [2] | Kai LEI, Jingtao WU, Wenliang DENG. Analysis of mechanical properties of composite-metal bolted panel under thermo-mechanical coupling condition [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(21): 532276-532276. |
| [3] | Tianchun ZOU, Yuezhang JU, Yuxi GUAN, Zegang LI, Hongcheng CHEN. Effect of stacking sequence on fatigue behavior of CFRP⁃Al joint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 428264-428264. |
| [4] | Xiangrong JING, Pan CHENG, Zhenbing LUO, Tianxiang GAO, Yan ZHOU, Xiong DENG. Ice breaking characteristics and crack propagation law of arc discharge plasma actuator [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 204-213. |
| [5] | ZHANG Ziyu, HAO Lin. Application of X-FEM in a phase-field model for crack propagation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 225976-225976. |
| [6] | SU Shaopu, CHANG Wenkui, CHEN Xianmin. Fatigue buckling test and analytical approach of aircraft typical panel structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 225219-225219. |
| [7] | WANG Bin, WANG Haitao, WANG Yufeng, ZHANG Wenwu. Water-assisted laser scanning machining test of thermal barrier coating [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525353-525353. |
| [8] | YANG Xiawei, PENG Chong, MA Tiejun, WEN Guodong, WANG Yanying, CHAI Xiaoxia, XU Yaxin, LI Wenya. Finite element analysis of fatigue crack growth of linear friction welded superalloy joints [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625004-625004. |
| [9] | XI Wei, LI Qiang, SHEN Peiliang, HE Rui, YANG Gang, LIU Shijie. Full life engineering analysis method for multiple site damage [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524328-524328. |
| [10] | CHANG Qi, YANG Weixi, ZHAO Heng, MENG Yao, LIU Jun, GAO Heming. A multi-sensor based crack propagation monitoring research [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(2): 223336-223336. |
| [11] | CHEN An, WEI Yulong, LIAO Jianghai, DONG Dengke, WANG Xu. Damage tolerance test of stiffened fuselage panel under complex load [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(1): 420093-420093. |
| [12] | BAI Xin, XIE Liyang. Fatigue Crack Growth Law Prediction Based on Steady Random Load [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2500-2505. |
| [13] | WEN Chen, YU Mei, LI Songmei, LIU Jianhua. Stress Corrosion Cracking Behavior of 23Co14Ni12Cr3Mo Ultra-high Strength Steel in 3.5% NaCl Solution by DCB Specimens [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(10): 2873-2880. |
| [14] | LIU Weixian, ZHOU Guangming, WANG Xinfeng. Theoretical Analysis of Crack Propagation in Composite ENF Specimens [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(1): 187-194. |
| [15] | YUAN Shenfang, ZHANG Hua, QIU Lei, YANG Weibo. A Fatigue Crack Growth Prediction Method Based on Particle Filter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(12): 2740-2747. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

