| [1]PADTURE N P, GELL M, JORDAN E H.Thermal Barrier Coatings for Gas-Turbine Engine Applications[J].Science, 2002, 296(5566):280-284
[2]HU X, XIE Y, LI F, et al.Research Progress on Environmental Corrosion Resistance of Thermal Barrier Coatings: A Review[J].Coatings, 2024, 14(10):1341-
[3]NIETO A, AGRAWAL R, BRAVO L, et al.Calcia–magnesia–alumina–silicate (CMAS) Attack Mechanisms and Roadmap Towards Sandphobic Thermal and Environmental Barrier Coatings[J].International Materials Reviews, 2021, 66(7):451-492
[4]OZGURLUK Y, DOLEKER K M, AHLATCI H, et al.Investigation of Calcium–magnesium-alumino-silicate (CMAS) Resistance and Hot Corrosion Behavior of YSZ and La2Zr2O7/YSZ Thermal Barrier Coatings (TBCs) Produced with CGDS Method[J]. Surface and Coatings Technology, 2021, 411: 126969.
[5]SHAN X, CHEN W, YANG L, et al.Pore Filling Behavior of Air Plasma Spray Thermal Barrier Coatings under CMAS Attack[J]. Corrosion Science, 2020, 167: 108478.
[6]KRAUSE A R, GARCES H F, DWIVEDI G, et al.Calcia-magnesia-alumino-silicate (CMAS)-induced Degradation and Failure of Air Plasma Sprayed Yttria-stabilized zirconia Thermal Barrier Coatings[J]. Acta Materialia, 2016, 105: 355-366.
[7]IQBAL A, MOSKAL G.Recent Development in Advance Ceramic Materials and Understanding the Mechanisms of Thermal Barrier Coatings Degradation[J].Archives of Computational Methods in Engineering, 2023, 30(8):4855-4896
[8]DREXLER J M, ORTIZ A L, PADTURE N P.Composition Effects of Thermal Barrier Coating Ceramics on Their Interaction with Molten Ca–Mg–Al–silicate (CMAS) Glass[J].Acta Materialia, 2012, 60(15):5437-5447
[9]ZHANG C, FAN Y, ZHAO J, et al.Corrosion Resistance of Nonstoichiometric Gadolinium Zirconate Coatings Against CaO-MgO-Al2O3-SiO2 Silicate[J].Journal of the European Ceramic Society, 2021, 41(6):3687-3695
[10]WU Y, ZHI W, LI Y, et al.Interactions Between Rare-earth Zirconates (RE2Zr2O7) and CMAS Silicate melts[J]. Corrosion Science, 2023, 224: 111526.
[11]LI F, ZHOU L, LIU J X, et al.High-entropy Pyrochlores with Low Thermal Conductivity for Thermal Barrier Coating Materials[J].Journal of Advanced Ceramics, 2019, 8(4):576-582
[12]ZHAO Z, XIANG H, DAI F Z, et al.La02Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A Novel High-entropy Ceramic with Low Thermal Conductivity and Sluggish Grain Growth Rate[J].Journal of Materials Science & Technology, 2019, 35(11):2647-2651
[13]ZHAO S, WANG Z, CAO J, et al.Study on High-entropy Rare-earth Zirconate Ceramics for Thermal Barrier Coatings: High-temperature Phase Stability, Thermophysical and Mechanical Properties[J]. Journal of Alloys and Compounds, 2025, 1010: 178047.
[14]YAN R, LIANG W, MIAO Q, et al.Mechanical,Thermal and CMAS Resistance Properties of High-entropy (Gd02Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 Ceramics[J].Ceramics International, 2023, 49(12):20729-20741
[15]LIN G, WANG Y, YANG L, et al.CMAS Corrosion Behavior of a Novel High Entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 Thermal Barrier Coating Materials[J]. Corrosion Science, 2023, 224: 111529.
[16]DENG S, HE G, YANG Z, et al.Calcium-magnesium-alumina-silicate (CMAS) Resistant High Entropy Ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for Thermal Barrier Coatings[J]. Journal of Materials Science & Technology, 2022, 107: 259-265.
[17]TIAN Y, ZHAO X, SUN Z, et al.Improved Thermal Properties and CMAS Corrosion Resistance of High-Entropy RE Zirconates by Tuning Fluorite-pyrochlore Structure[J].Ceramics International, 2024, 50(11):19182-19193
[18]YANG L, GENG H, GUAN Z, et al.The Role of La and Nd in Enhancing CMAS Corrosion Resistance of High-entropy (La,Nd,Tm,Yb,Lu)2Zr2O7 Thermal Barrier Coating Materials[J].Journal of the European Ceramic Society, 2025, 45(12):117466-
[19]FAN W, LIU Y, LV Z, et al.Thermophysical and Mechanical Properties of Dual-phase Medium- and High-Entropy Rare-earth Zirconate Ceramics[J].Ceramics International, 2023, 49(23):38000-38006
[20]CHE J, WANG X, LIU X, et al.Thermal Transport Property in Pyrochlore-type and Fluorite-type A2B2O7 Oxides by Molecular Dynamics Simulation[J]. International Journal of Heat and Mass Transfer, 2022, 182: 122038.
[21]YANG H, LIN G, BU H, et al.Single-phase Forming Ability of High-entropy Ceramics from a Size Disorder Perspective: A Case Study of (La02Eu0.2Gd0.2Y0.2Yb0.2)2Zr2O7[J].Ceramics International, 2022, 48(5):6956-6965
[22]LUO L, YANG G, REN G, et al.Effect of Multi-component at the A Site on the Phase and Sintering Resistance of High Entropy Rare Earth Zirconates[J].Journal of the European Ceramic Society, 2024, 44(4):2550-2559
[23]KRESSE G, FURTHMüLLER J.Efficient Iterative Schemes for ab initiototal-energy Calculations using a Plane-wave Basis Set[J]. Physical Review B, 54(16): 11169-11186.
[24]BL?CHL P E.Projector Augmented-wave Method[J]. Physical Review B, 50(24): 17953-17979.
[25]PERDEW J P, BURKE K, ERNZERHOF M.Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 77(18): 3865-3868.
[26]WALLE A, AATS M, CEDER G.The Alloy Theoretic Automated Toolkit: A User Guide[J].Calphad, 2002, 26(4):539-553
[27]MONKHORST H J, PACK J D.Special Points for Brillouin-zone Integrations[J].Physical Review B, , 13(12):5188-5192
[28]WANG V, XU N, LIU J C, et al.VASPKIT: A User-friendly Interface Facilitating High-throughput Computing and Analysis Using VASP Code[J].Computer Physics Communications, 2021, 267:108033-
[29]MIRACLE D B, SENKOV O N.A Critical Review of High Entropy Alloys and Related Concepts[J].Acta Materialia, 2017, 122:448-511
[30]WEI X, MA Y, HONG F, et al.Structure and Properties of RE2HE2O7 Thermal Barrier Ceramics Designed with High-entropy at Different Sites[J].Bulletin of Materials Science, 2024, 47(4):274-
[31]SUBRAMANIAN M A, ARAVAMUDAN G, SUBBA Rao G V.Oxide Pyrochlores — A Review[J].Progress in Solid State Chemistry, 1983, 15(2):55-143
[32]ZHOU M, ZHANG H, YANG G, et al.Reaction Mechanisms of (RE02Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 (RE = La or Yb) under CaO-MgO-Al2O3-SiO2 (CMAS) attack[J].Journal of the European Ceramic Society, 2024, 44(6):4055-4063
[33]WANG X, HE Z, YANG X, et al.Corrosion Resistance of High Entropy Rare Earth Zirconate Ceramic to CMAS[J].Ceramics International, 2025, 51(6):8129-8137
[34]WANG Y, MA Z, LIU L, et al.Reaction Products of Sm2Zr2O7 with Calcium-magnesium-aluminum-silicate (CMAS) and Their Evolution[J].Journal of Advanced Ceramics, 2021, 10(6):1389-1397
[35]XIANG H, XING Y, DAI F, et al.High-entropy Ceramics: Present Status,Challenges,and a Look Forward[J].Journal of Advanced Ceramics, 2021, 10(3):385-441
[36]DUFFY J A, INGRAM M D.An Interpretation of Glass Chemistry in Terms of the Optical Basicity Concept[J].Journal of Non-Crystalline Solids, 1976, 21(3):373-410
[37]KRAUSE A R, SENTURK B S, GARCES H F, et al.ZrO2·Y2O3Thermal Barrier Coatings Resistant to Degradation by Molten CMAS: Part I,Optical Basicity Considerations and Processing[J].Journal of the American Ceramic Society, 2014, 97(12):3943-3949
[38]SU Q, ZHANG Y, LI G, et al.Doped Effect of Gd and Y Elements on Corrosion Resistance of ZrO2 in CMAS Melt: First-principles and Experimental Study[J].Journal of the European Ceramic Society, 2021, 41(15):7893-7901
[39]SHPATAKOVSKAYA G V.Binding Energies in Electron Shells of Rare-Earth Atoms[J].Journal of Experimental and Theoretical Physics, 2020, 131(3):385-393
[40]HINUMA Y, TOYAO T, KAMACHI T, et al.Density Functional Theory Calculations of Oxygen Vacancy Formation and Subsequent Molecular Adsorption on Oxide Surfaces[J].The Journal of Physical Chemistry C, 2018, 122(51):29435-29444 |