Acta Aeronautica et Astronautica Sinica
Received:
2023-06-27
Revised:
2023-10-17
Online:
2023-10-24
Published:
2023-10-24
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://hkxb.buaa.edu.cn/EN/10.7527/S1000-6893.2023.29229
[1] 谷迎松, 杨智春, 赵令诚. 飞行器气动弹性力学教程[M]. 西安:西北工业大学出版社, 2021.[2] 张桂玮, 谭光辉, 徐钦炜, 等. 地面颤振模拟试验中加载系统动态特性的影响研究[J]. 振动与冲击, 2020, 39(16):214-221+260.[3] 侯英昱, 付志超, 朱剑, 等. 气动力模拟非接触式加载方法研究[J]. 空气动力学学报, 2018, 36(2):357-361.[4] Hou Y, Liu Z. Aeroelastic test of large flexible structure based on electromagnetic dry wind tunnel[C]. Asia-Pacific International Symposium on Aerospace Technology, 2019:2684-2691.[5] 侯英昱, 刘子强. 基于电磁干风洞的大柔性结构准模态试验研究[J]. 空气动力学学报, 2019, 37(1):115-120.[6] Hou Y, Zhu J, Fu Z. Computer-aided physical test technology[C]. 4th International Conference on Computer Science and Application Engineering, CSAE 2020, October 20, 2020 - October 22, 2020, 2020:Association for Science and Engineering (ASciE).[7] Hou Y, Li Q, Zhang Z. Unsteady Aerodynamic Simulation Test Based on Ampere Force and Electromagnetic Field[C]. Journal of Physics: Conference Series, 2022:012037.[8] 赵永辉. 气动弹性力学与控制[M]. 北京:科学出版社, 2007.[9] 万志强, 杨超. 飞行器飞行载荷分析与气动弹性优化[M]. 北京:航空工业出版社, 2021.[10] 宋巧治. 基于鲁棒控制的多点激励力控制系统设计[D]. 西北工业大学, 2014.[11] Zeng J, Kingsbury D, Ritz E, et al. GVT-based ground flutter test without wind tunnel[C]. Proceeding of 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.[12] 胡巍, 杨智春, 谷迎松. 带操纵面机翼气动弹性地面试验仿真系统中的气动力降阶方法[J]. 西北工业大学学报, 2013, (05):810-815.[13] 许云涛. 地面颤振模拟试验方法研究[D]. 北京航空航天大学, 2012.[14] 叶正寅, 张伟伟, 史爱明. 流固耦合力学基础及其应用[M]. 流固耦合力学基础及其应用, 2010.[15] Wang B, Fan X. Ground flutter simulation test based on reduced order modeling of aerodynamics by CFD/CSD coupling method[J]. International Journal of Applied Mechanics, 2019, 11(01).[16] 宋巧治, 王彬文, 李晓东. 基于CFD的地面颤振模拟试验非定常气动力重构方法研究[J]. 振动与冲击, 2022, 41(10):40-46.[17] Peters D, Johnson M. Finite-state airloads for deformable airfoils on fixed and rotating wings[J]. Asme-Publications-AD, 1994, 44:1-1.[18] Lee B, Gong L, Wong Y. Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity[J]. Journal of Fluids and Structures, 1997, 11(3):225-246.[19] 王俊蛟. 非定常气动铰链力矩理论分析与试验系统研究[D]. 北京交通大学, 2018.[20] 邓智, 宋汉文. 基于反馈控制的桥梁节段模型干风洞实验仿真[J]. 振动与冲击, 2017, 36(5):120-126.[21] Kearns J. Flutter simulator:US3003960A[P]. 1960.[22] Su W, Song W. A real-time hybrid aeroelastic simulation platform for flexible wings[J]. Aerospace Science and Technology, 2019, 95:105513.[23] Su W, Song W, Hill V. Real-time hybrid simulation and experiment for aeroelastic testing of flexible wings[C]. AIAA Scitech 2019 Forum, 2019:2032.[24] Su W, Song W. Stability of real-time hybrid aeroelastic simulations with actuation and sensor measurement delays[C]. AIAA SCITECH 2022 Forum, 2022:0525.[25] Kearns J. Missile-wing flutter simulation[J]. Johns Hopkins University Applied Physics Laboratory Technical Digest 1963.[26] Wu Z, Chu L, Yuan R, et al. Studies on aeroservoelasticity semi-physical simulation test for missiles[J]. Science China-Technological Sciences, 2012, 55(9):2482-2488.[27] Liseykin G, Markin I, Pronin M, et al. Physical model vibration modeling using artificial flow[J]. TsAGI Science Journal, 2019, 50(1):103–113.[28] Bykov A, Kondrashev G, Parafes S, et al. Methods for investigating the unmanned aerial vehicle electric actuator performance in aeroelasticity tasks[J]. Russian Aeronautics (Iz VUZ), 2016, 59(3):331-337.[29] Wu Z, Zhang R, Ma C, et al. Aeroelastic semiphysical simulation and wind-tunnel testing validation of a fin–actuator system[J]. Journal of Aircraft, 2017, 54(1):235-245.[30] Smyslov V. Tasks of the modal test and reproduction of forces by means of electromechanical simulation[J]. TsAGI Science Journal, 2017, 48(8):761–771.[31] Baranov N, Vasiljev K, Narizhny A, et al. Experimental investigation of the all-flying stabilizer flutter with nonlinear characteristics in the control links using aerodynamic forces electromechanical simulation[J]. Uchenye Zapiski TsAGI, 1983, XIV(3).[32] Liseykin G, Bogatyrev M, Pronin M, et al. Research on dynamic stability of an elastic model using tests in artificial flow[C]. 16th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2015, June 28, 2015 - July 2, 2015, 2015:Polytec.[33] Naryzhny A, Pedora A, Smyslov V. Vibration tests with airflow simulation in the aeroelastic investigations on dynamically scaled models[J]. Uchenye Zapiski TsAGI, 2001, 32(1–2).[34] 潘树祥, 齐丕骞. 地面模拟热颤振试验研究[J]. 强度与环境, 1984, (02):8-12.[35] Dhital K, Han J, Lee Y. Approximation of distributed aerodynamic force to a few concentrated forces for studying supersonic panel flutter[J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2016, 26(5):518-527.[36] Karpel M. Extensions to the minimum-state aeroelastic modeling method[J]. AIAA Journal, 1991, 29(11):2007-2009.[37] 胡巍. 变体飞行器动力学建模及气动弹性特性研究[D]. 西北工业大学, 2017.[38] 宋巧治, 李晓东. 平板翼颤振地面模拟试验机理研究[J]. 结构强度研究, 2016, (1):1-7.[39] Dhital K, Han J. Panel flutter emulation using a few concentrated forces[J]. International Journal of Aeronautical and Space Sciences, 2018, 19(1):80-88.[40] 李秋彦, 李刚, 魏洋天, 等. 先进战斗机气动弹性设计综述[J]. 航空学报, 2020, 41(06):44-70.[41] 陈浩宇, 王彬文, 宋巧治, 等. 热颤振地面模拟试验技术研究[J]. 航空学报, 2022:1-12.[42] 陈浩宇, 王彬文, 宋巧治, 等. 时变系统地面颤振模拟试验方法研究[J]. 应用力学学报, 2022, 39(04):633-641.[43] 许云涛, 吴志刚, 杨超. 地面颤振模拟试验中的非定常气动力模拟[J]. 航空学报, 2012, 33(11):1947-1957.[44] 高博. 地面颤振试验系统动力学建模与控制仿真技术研究[D]. 中国航天科技集团公司第一研究院, 2018.[45] 宋巧治, 王彬文, 李晓东. 基于机翼颤振风洞试验模型的地面颤振模拟试验验证[J]. 工程与试验, 2021, 61(02):3-7.[46] 黎伟明, 宋巧治, 刘继军. 地面颤振试验系统气动插值点优化配置方法研究[J]. 应用力学学报, 2022, 39(03):445-451.[47] Dhital K, Han J. Subsonic flutter emulation of composite laminate using a few concentrated forces[C]. 21st International Conference on Composite Materials, ICCM 2017, August 20, 2017 - August 25, 2017, 2017.[48] Yun J, Han J. Development of ground vibration test based flutter emulation technique[J]. Aeronautical Journal, 2020, 124(1279):1436-1461.[49] Yun J, Han J. Application of ground flutter emulation test technique for the passive flutter suppression effect validation[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(6):1344-1355.[50] Wu Z, Ma C, Yang C. New approach to the ground flutter simulation Test[J]. Journal of Aircraft, 2016, 53(5):1575-1580.[51] Kearns J. A ground flutter simulator[R]. Laurel, Maryland: Johns Hopkins University Applied Physics Laboratory, 1957.[52] Kearns J. Flutter simulation[R]. Laurel, Maryland: Johns Hopkins University Applied Physics Laboratory, 1962.[53] 曹登庆, 李基鹏, 邵崇晖. 一种分布式气动力与有限激振点激振载荷的等效方法:CN113218615A[P]. 2021-06-03.[54] 刘楚源. 基于特征值跟踪的气动弹性载荷等效与简化[D]. 同济大学, 2019.[55] 刘楚源, 刘泽森, 宋汉文. 基于主动控制策略的机翼颤振特性模拟[J]. 力学学报, 2019, 51(02):333-340.[56] Zhang Z, Gao B, Wang J, et al. A generalised force equivalence-based modelling method for a dry wind-tunnel flutter test system[J]. Aeronautical Journal, 2021, 125(1286):720-741.[57] 茹科夫斯基. 气动弹性[M]. 上海:上海交通大学出版社, 2020.[58] Zhang G, Yang Z, Gu Y. New approach to aerodynamic reduction in ground flutter simulation based on generalized aerodynamics[C]. Proceeding of 26th International Congress on Sound and Vibration, 2019.[59] 张桂玮, 杨智春, 宋巧治, 等. 一种基于广义气动力的非定常气动力降阶方法. 2019-06-25.[60] 张桂玮. 考虑激振器特性的地面颤振模拟试验[D]. 西北工业大学, 2022.[61] 邵崇晖. 超声速流中壁板颤振的抑制和地面试验研究[D]. 哈尔滨工业大学, 2017.[62] Karkle P, Narizhny A, Smyslov V. Test bench investigation of random aircraft vibrations using electromechanical simulation of aerodynamic forces under different flight conditions.[J]. Uchenye Zapiski TsAGI, 1998, XXIX(1-2):157-164.[63] Smyslov V, Dijkstra K, Karkle P. The experience in ground vibration tests of flexible flying vehicles using PRODERA equipment and some additional tasks[C]. European Conference for Aerospace Sciences (EUCASS), 2005.[64] Smyslov V. Study of problems of aeroelastic stability of flight vehicles with playback of the aerodynamic forces at low Strouhal numbers[J]. Zapiski TsAGI, 2006, 37(1-2):99-105.[65] Liseykin G, Bogatyrev M, Pronin M, et al. Structural nonlinearities simulation on the flutter electromechanical modeling test bench[C]. 29th Congress of International Council of the Aeronautical Sciences, 2014:7-12.[66] Orlova O, Pronin M, Smyslov V. Numerical simulation and experimental flutter research of an aircraft with asymmetric control surfaces[J]. 17-th Internationalroelasticity and Structural Dynamics, IFASD, 2017.[67] Leonteva R, Smyslov V. Features of simulating the force actions from a damaged engine at ground vibration tests of an airplane[J]. TsAGI Science Journal, 2016, 47(6):649–663.[68] Leonteva R, Pronin M, Smyslov V. Modeling of forced vibrations of the airplane with the engine imbalance аt ground resonance tests[C]. 17th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2017, 2017.[69] Song Q, Yang Z, Wang W. Robust control of exciting force for vibration control system with multi-exciters[J]. Science China-Technological Sciences, 2013, 56(10):2516-2524.[70] 郭嘉瑞. 激励力源系统动力学特性研究[D]. 中北大学, 2020.[71] Ma C, Wu Z, Yang C. Determination of the dynamic characteristics of a multi-point excitation system using electrodynamic shakers and control of their exciting force[J]. Journal of Vibration Engineering & Technologies, 2016, 4(2):161-173.[72] Yun J, Han J, Lee Y. MIMO force control of electro-dynamic shaker system using inverse transfer function based controller[J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2018, 28(1):5-13.[73] Tomlinson G. Force distortion in resonance testing of structures with electro-dynamic vibration exciters[J]. Journal of Sound and Vibration, 1979, 63(3):337-350.[74] Rao D. On the 'glitches' in the force transmitted by an electrodynamic exciter to a structure[C]. Proceeding of 58th Shock and Vibration Symposium, 1987:245-255.[75] Olsen N. Using and understanding electrodynamic shakers in modal applications[C]. Proceedings of the 4th International Modal Analysis Conference, Los Angeles, California, USA, 1986:1160-1167.[76] Rao D. Electrodynamic interaction between a resonating structure and an exciter[C]. Proceedings of the 5th International Modal Analysis Conference, 1987:1142-1150.[77] Lang G. Electrodynamic shaker fundamentals[J]. Sound and Vibration, 1997, 31(4):14-23.[78] Lang G, Snyder D. Understanding the physics of electrodynamic shaker performance[J]. Sound and Vibration, 2001, 35(10):24-33.[79] Saraswat A, Tiwari N. Modeling and study of nonlinear effects in electrodynamic shakers[J]. Mechanical Systems and Signal Processing, 2017, 85:162-176.[80] Oliveira L, Varoto P. The effects of armature rotation on data quality in base driven shaker testing[C]. ISMA 27-International Conference on Noise and Vibration Engineering. Leuven, Belgium, 2002:911-918.[81] Waimer S, Manzato S, Peeters B, et al. A multiphysical modelling approach for virtual shaker testing correlated with experimental test results [M]. Special Topics in Structural Dynamics, Volume 6. 2016: 87-99.[82] Hoffait S, Marin F, Simon D, et al. Measured-based shaker model to virtually simulate vibration sine test[J]. Case Studies in Mechanical Systems and Signal Processing, 2016, 4:1-7.[83] Hoffait S, Marin F, Simon D, et al. Virtual shaker testing at V2i: measured-based shaker model and industrial test case[C]. Proceedings of 27th International Conference on Noise and Vibration Engineering and International Conference on Uncertainty in Structural Dynamics, 2016:1013-1026.[84] Zuo S, Feng Z, Pan J, et al. Electromechanical coupling dynamic modeling and analysis of vertical electrodynamic shaker considering low frequency lateral vibration[J]. Advances in Mechanical Engineering, 2020, 12(10):16.[85] Rao D, Dill J, Zorzi E. Magnetic suspension characteristics of electromagnetic actuators[R]. 1993.[86] Tomlinson G. A simple theoretical and experimental study of the force characteristics from electrodynamic exciters on linear and nonlinear systems[C]. Proceedings of the 5th International Modal Analysis Conference, 1987:1479–1486.[87] Varoto P, De Oliveira L. Interaction between a vibration exciter and the structure under test[J]. Sound and Vibration, 2002, 36(10):20-26.[88] Varoto P, De Oliveira L. On the force drop off phenomenon in shaker testing in experimental modal analysis[J]. Shock and Vibration, 2002, 9(4-5):165-175.[89] De Oliveira L, Varoto P, Peres M. Shaker structure interaction: Overview and updated results[C]. Proceeding of 18th International Congress on Sound and Vibration, 2011:2516-2523.[90] Pacini B, Kuether R, Roettgen D. Shaker-structure interaction modeling and analysis for nonlinear force appropriation testing[J]. Mechanical Systems and Signal Processing, 2022, 162:108000.[91] Zhang G, Wang X, Yang Z. Study on excitation force characteristics in a coupled shaker-structure system considering structure modes coupling[J]. Chinese Journal of Aeronautics, 2021, 35(7):227-245.[92] Dargah M. Effects of the shaker impedance and transducer cross-axis sensitivity in frequency response function estimation[D]. University of Cincinnati, 2012.[93] Dargah M, Allemang R, Phillips A. Exciter impedance and cross-axis sensor sensitivity issues in FRF estimation[C]. Proceedings of the 30th IMAC, 2012:535-545.[94] Peres M, Kallmeyer C, Witter M, et al. Advantages of multiple-input multiple-output (MIMO) testing using low level excitation systems[C]. Proceedings of the 26th International Conference on Noise and Vibration Engineering, 2014:1121-1134.[95] Peres M, Kallmeyer C, Witter M, et al. Advantages of multiple-input multiple-output Testing[J]. Sound and Vibration, 2015, 49(8):8-12.[96] Mayes R, Ankers L, Daborn P, et al. Optimization of shaker locations for multiple shaker environmental testing[J]. Experimental Techniques, 2020, 44(3):283-297.[97] 张忠, 高博, 原凯, 等. 电磁激振器建模与实时控制方法研究[J]. 强度与环境, 2018, 45(05):28-34.[98] Schultz R. Vibration test design with integrated shaker electro-mechanical models[C]. Proceeding of the 38th IMAC, 2020:63-72.[99] Zhang G, Li W, Wang X, et al. Influence of flexible structure vibration on the excitation forces delivered by multiple electrodynamic shakers[J]. Mechanical Systems and Signal Processing, 2022, 169:108753.[100] Ma C, Wu Z, Yang C. Mechanical characteristics of electromagnetic shakers and its force control[C]. 52nd Aerospace Sciences Meeting, 2014.[101] 王彬文, 宋巧治, 陈浩宇. 高超声速飞行器地面颤振评估技术研究[J]. 南京航空航天大学学报, 2022, 54(05):899-907.[102] 许云涛, 吴志刚, 杨超. 地面颤振模拟试验仿真研究[C]. 第十三届全国空气弹性学术交流会论文集, 哈尔滨, 2013:404-409.[103] 徐朝阳. 大展弦比机翼颤振及状态监测研究[D]. 南京航空航天大学, 2016. |
[1] | WANG Xinjiang, LIU Ziqiang, GUO Li, FU Zhichao, LYU Jinan. Analysis method for flutter mode indicator based on principle of work and power [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 224920-224920. |
[2] | LEI Pengxuan, YU Li, CHEN Dehua, LYU Binbin. Influence of flight control law on body freedom flutter characteristics: Experimental study [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 124378-124378. |
[3] | CHEN Senlin, GAO Zhenghong, ZHU Xinqi, PANG Chao, DU Yiming, CHEN Shusheng. Unsteady aerodynamic modeling of unstable dynamic process [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(8): 123675-123675. |
[4] | LI Qiuyan, LI Gang, WEI Yangtian, RAN Yuguo, WU Bo, TAN Guanghui, LI Yan, CHEN Shi, LEI Boqi, XU Qinwei. Review of aeroelasticity design for advanced fighter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523430-523430. |
[5] | XIAO Yu. Prediction of critical continuous gust load based on adaptive stochastic optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522383-522383. |
[6] | TAN Weiwei, YAN Hong, NIE Zhijun, MA Tuliang, LIANG Yihua. Propulsion performance simulation of turbofan engine for large civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522428-522428. |
[7] | LIU Nan, GUO Chengpeng, BAI Junqiang. Efficient prediction approach of transonic flutter based on high-order harmonic balance [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(10): 121989-121989. |
[8] | CHEN Senlin, GAO Zhenghong, RAO Dan. Unsteady aerodynamics modeling method using Volterra series based on multiwavelet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(1): 121379-121379. |
[9] | LI Guojun, BAI Junqiang, TANG Changhong, LIU Nan, QIAO Lei. Characteristics of laminar separation flutter of two-dimensional airfoils at low Reynolds numbers [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(11): 121280-121280. |
[10] | HE Fei, HONG Guanxin, LIU Hai, DAN Dan, WANG Ming. Efficient transonic static aeroelastic analysis method based on high accuracy modal aerodynamics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(11): 121157-121157. |
[11] | GUO Tongbiao, BAI Junqiang, SUN Zhiwei, WANG Chen. Aeroelastic modeling and analysis of wings considering geometric nonlinearity [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(11): 121351-121351. |
[12] | ZHANG Weiwei, GAO Yiqi, QUAN Jinlou, SU Dan. Characteristics analysis of forced vibration response of mistuned cascades [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(9): 521018-521018. |
[13] | MA Li, ZHAO Qijun, ZHAO Mengmeng, WANG Bo. Computation analyses of aeroelastic loads of rotor based on CFD/CSD coupling method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(6): 120762-120762. |
[14] | CHEN Tao, XU Min, XIE Dan, AN Xiaomin. Post flutter response of flexible cantilever plate in low speed flow field [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(3): 120215-120215. |
[15] | YANG Zhichun, LIU Liyuan, WANG Xiaochen. Analysis of aeroelastic vibro-acoustic response for heated panel of hypersonic vehicle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(12): 3578-3587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341