[1] 倪萌, 朱惠人, 裘云, 等. 航空发动机涡轮叶片冷却技术综述[J]. 燃气轮机技术, 2005, 18(4):25-33, 38. NI M, ZHU H R, QIU Y, et al. Review of aero-turbine blade cooling technology[J]. Gas Turbine Technology, 2005, 18(4):25-33, 38(in Chinese). [2] 戴萍, 林枫. 燃气轮机叶片气膜冷却研究进展[J]. 热能动力工程, 2009, 24(1):1-6. DAI P, LIN F. Recent advances in the study of air-film-cooled gas turbine blades[J]. Journal of Engineering for Thermal Energy and Power, 2009, 24(1):1-6(in Chinese). [3] WIEGHARDT K. Hot-air discharge for de-icing[M]. Wright-Patterson AFB:Air Force Materiel Command, 1946:1-44. [4] METZGER D E, TAKEUCHI D I, KUENSTLER P A. Effectiveness and heat transfer with full-coverage film cooling[J]. Journal of Engineering for Gas Turbines and Power, 1973, 95(3):180-184. [5] MUSKA J F, FISH R W, SUO M. The additive nature of film cooling from rows of holes[J]. Journal of Engineering for Gas Turbines and Power, 1976, 98(4):457-463. [6] GRITSCH M, BALDAUF S, MARTINY M, et al. The superposition approach to local heat transfer coefficients in high density ratio film cooling flows[C]//ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. New York:ASME, 1999. [7] GOLDSTEIN R J, ECKERT E R G, ERIKSEN V L, et al. Film cooling following injection through inclined circular tubes[J]. Israel Journal of Technology, 1970, 8(1):145-154. [8] PEDERSEN D R, ECKERT E R G, GOLDSTEIN R J. Film cooling with large density differences between the mainstream and the secondary fluid measured by the heat-mass transfer analogy[J]. Journal of Heat Transfer, 1977, 99(4):620-627. [9] SINHA A K, BOGARD D G, CRAWFORD M E. Film-cooling effectiveness downstream of a single row of holes with variable density ratio[J]. Journal of Turbomachinery, 1991, 113(3):442-449. [10] WALTERS D K, LEYLEK J H. A systematic computational methodology applied to a three-dimensional film-cooling flowfield[J]. Journal of Turbomachinery, 1997, 119(4):777-785. [11] WALTERS D K, LEYLEK J H. A detailed analysis of film-cooling physics:Part I-Streamwise injection with cylindrical holes[J]. Journal of Turbomachinery, 2000, 122(1):102-112. [12] WALTERS D K, LEYLEK J H. A detailed analysis of film-cooling physics:Part Ⅱ-Compound-angle injection with cylindrical holes[J]. Journal of Turbomachinery, 2000, 122(1):113-121. [13] WALTERS D K, LEYLEK J H. A detailed analysis of film-cooling physics:Part Ⅲ-Streamwise injection with shaped holes[J]. Journal of Turbomachinery, 2000, 122(1):122-132. [14] WALTERS D K, LEYLEK J H. A detailed analysis of film-cooling physics:Part IV-Compound-angle injection with shaped holes[J]. Journal of Turbomachinery, 2000, 122(1):133-145. [15] ACHARYA S, TYAGI M, HODA A. Flow and heat transfer predictions for film cooling[J]. Annals of the New York Academy of Sciences, 2001, 934(1):110-125. [16] BALDAUF S, SCHEURLEN M, SCHULZ A, et al. Correlation of film-cooling effectiveness from thermographic measurements at enginelike conditions[J]. Journal of Turbomachinery, 2002, 124(4):686-698. [17] GUO X, LI W, IORIO F. Convolutional neural networks for steady flow approximation[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2016:481-490. [18] SEKAR V, JIANG Q H, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5):057103. [19] 陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36(2):294-299. CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36(2):294-299(in Chinese). [20] 廖鹏, 姚磊江, 白国栋, 等. 基于深度学习的混合翼型前缘压力分布预测[J]. 航空动力学报, 2019, 34(8):1751-1758. LIAO P, YAO L J, BAI G D, et al. Prediction of hybrid airfoil leading edge pressure distribution based on deep learning[J]. Journal of Aerospace Power, 2019, 34(8):1751-1758(in Chinese). [21] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1):522480. CHEN H X, DENG K W, LI R Z, Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522480(in Chinese). [22] WANG C H, ZHANG J Z, ZHOU J H, et al. Prediction of film-cooling effectiveness based on support vector machine[J]. Applied Thermal Engineering, 2015, 84:82-93. [23] 秦晏旻, 李雪英, 任静, 等. 基于BP神经网络的多参数气膜冷却效率研究[J]. 工程热物理学报, 2011,32(7):49-52. QIN Y M, LI X Y, REN J, et al. Prediction of the adiabatic film cooling effectiveness influenced by multi parameters based on BP neural network[J]. Journal of Engineering Thermophysics, 2011,32(7):49-52(in Chinese). [24] DOLATI S, AMANIFARD N, DEYLAMI H M. Numerical study and GMDH-type neural networks modeling of plasma actuator effects on the film cooling over a flat plate[J]. Applied Thermal Engineering, 2017, 123:734-745. [25] DáVALOS J O, GARCíA J C, URQUIZA G, et al. Prediction of film cooling effectiveness on a gas turbine blade leading edge using ANN and CFD[J]. International Journal of Turbo and Jet Engines, 2018, 35(2):101-111. [26] MILANI P M, LING J, SAEZ-MISCHLICH G, et al. A machine learning approach for determining the turbulent diffusivity in film cooling flows[J]. Journal of Turbomachinery, 2018, 140(2):021006. [27] MILANI P M, LING J, EATON J K. Generalization of machine-learned turbulent heat flux models applied to film cooling flows[J]. Journal of Turbomachinery, 2020, 142(1):011007. [28] YANG L, DAI W, RAO Y, et al. Optimization of the hole distribution of an effusively cooled surface facing non-uniform incoming temperature using deep learning approaches[J]. International Journal of Heat and Mass Transfer, 2019, 145:118749. [29] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [30] CYBENKO G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control, Signals and Systems, 1989, 2(4):303-314. [31] HORNIK K. Approximation capabilities of multilayer feedforward networks[J]. Neural networks, 1991, 4(2):251-257. [32] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536. [33] LUTUM E, JOHNSON B V. Influence of the hole length-to-diameter ratio on film cooling with cylindrical holes[J]. Journal of Turbomachinery, 1999, 121(2):209-216. [34] GRITSCH M, SCHULZ A, WITTIG S. Wall effectiveness measurements of film-cooling holes with expanded exits[J]. Journal of Turbomachinery, 1998, 120(3):549-556. [35] MA Y, YU D, WU T, et al. PaddlePaddle:An open-source deep learning platform from industrial practice[J]. Frontiers of Data and Domputing, 2019, 1(1):105-115. [36] KINGMA D P, BA J. Adam:A method for stochastic optimization[EB/OL]. (2017-01-30)[2020-05-01]. http://arxiv.org/abs/1412.6980. |