Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (16): 27923-027923.doi: 10.7527/S1000-6893.2022.27923
• Reviews • Previous Articles Next Articles
Hanru LIU1(), Nanshu CHEN1, Yu LIU2, Zhijie HU1
Received:
2022-08-15
Revised:
2022-08-29
Accepted:
2022-10-09
Online:
2023-08-25
Published:
2022-11-17
Contact:
Hanru LIU
E-mail:hrliu@nwpu.edu.cn
Supported by:
CLC Number:
Hanru LIU, Nanshu CHEN, Yu LIU, Zhijie HU. Review of porous media used in flow control and aerodynamic noise reduction[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 27923-027923.
Table 1
Typical designs of porous media for reducing airfoil self-noise
位置 | 代表文献 | 年份 | 典型结构设计 |
---|---|---|---|
前缘多孔 | Roger等[ Fink和Bailey[ Bowen等[ Wang等[ | 2013 1980 2020 2022 | |
尾缘多孔 | Howe[ Khorrami和Choudhari [ Fassmann等[ Jaworski和Peake [ Fink和Bailey [ Herr和Reichenberger [ Zhou等 [ Wang等[ | 1979 2003 2015 2013 1980 2011 2021 2021 | |
翼身 | Revell等[ Geyer等[ | 1997 2010/2011 | |
襟翼侧缘 | Angland等[ | 2009 |
1 | MEHRYAN S A M, KASHKOOLI F M, SOLTANI M. Comprehensive study of the impacts of surrounding structures on the aero-dynamic performance and flow characteristics of an outdoor unit of split-type air conditioner[J]. Building Simulation, 2018, 11(2): 325-337. |
2 | 钟思阳, 黄迅. 气动声学和流动噪声发展综述: 致初学者[J]. 空气动力学学报, 2018, 36(3): 363-371. |
ZHONG S Y, HUANG X. A review of aeroacoustics and flow-induced noise for beginners[J]. Acta Aerodynamica Sinica, 2018, 36(3): 363-371 (in Chinese). | |
3 | 孙晓峰,周盛. 气动声学[M]. 北京: 国防工业出版社, 1994. |
SUN X F, ZHOU S. Aeroacoustics[M]. Beijing: National Defense Industry Press, 1994 (in Chinese). | |
4 | 毛义军, 祁大同. 叶轮机械气动噪声的研究进展[J]. 力学进展, 2009, 39(2): 189-202. |
MAO Y J, QI D T. Review of aerodynamic noise in turbomachinery[J]. Advances in Mechanics, 2009, 39(2): 189-202 (in Chinese). | |
5 | ZHAO K, OKOLO P, NERI E, et al. Noise reduction technologies for aircraft landing gear:A bibliographic review[J]. Progress in Aerospace Sciences, 2020, 112: 100589. |
6 | MOREAU S. A review of turbomachinery noise: From analytical models to high-fidelity simulations[M]∥RADESPIEL R, SEMAAN R. Fundamentals of high lift for future civil aircraft. Cham: Springer, 2021: 579-595. |
7 | 乔渭阳. 航空发动机气动声学[M]. 北京: 北京航空航天大学出版社, 2010. |
QIAO W Y. Aeroacoustics of aero-engine[M]. Beijing: Beihang University Press, 2010 (in Chinese). | |
8 | PEAKE N, PARRY A B. Modern challenges facing turbomachinery aeroacoustics[J]. Annual Review of Fluid Mechanics, 2012, 44: 227-248. |
9 | Environmental Protection Agency.Review and analysis of present and planned FAA noise regulatory actions and their consequence regarding aircraft and airport operations:NTID 73.6[R]. Washington, D.C.: Environmental Protection Agency, 1973. |
10 | HILEMAN J I. FAA research on aviation noise [C]∥The 32nd Annual Aviation Noise and Emissions Symposium. 2018. |
11 | 赵鲲, 梁俊彪, BELYAEV I, 等. 民用飞机起落架噪声及其控制技术研究进展[J]. 航空学报, 2022, 43(8): 026996. |
ZHAO K, LIANG J B, BELYAEV I, et al. Review of civil airplane landing gear noise study and its control approaches[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 026996 (in Chinese). | |
12 | The Boeing Company. 787 Dreamliner by design[EB/OL]. [2022-08-15].. |
13 | 颜维琦,曹继军. 我国自主研制C919大型客机圆满首飞[N].光明日报,2017-05-06(1). |
YAN W Q, CAO J J. China’s self-developed C919 airliner successfully made its first flight[N]. Guangming Daily, 2017-05-06(1). | |
14 | TALOTTE C. Aerodynamic noise: A critical survey[J]. Journal of Sound and Vibration, 2000, 231(3): 549-562. |
15 | KING III W F. A précis of developments in the aeroacoustics of fast trains[J]. Journal of Sound and Vibration, 1996, 193(1): 349-358. |
16 | 司海青, 王同光, 吴晓军. 参数对风力机气动噪声的影响研究[J]. 空气动力学学报, 2014, 32(1): 131-135. |
SI H Q, WANG T G, WU X J. Effects of parameters on aerodynamic noise from wind turbine[J]. Acta Aerodynamica Sinica, 2014, 32(1): 131-135 (in Chinese). | |
17 | DOOLAN C, MOREAU D J, BROOKS L A. Wind turbine noise mechanisms and some concepts for its control[J]. Acoustics Australia, 2012, 40(1): 7-13. |
18 | MOREAU D J, BROOKS L A, DOOLAN C J. On the noise reduction mechanism of a flat plate serrated trailing edge at low-to-moderate Reynolds number[C]∥ 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). Reston: AIAA, 2012. |
19 | YOO S P, LEE D Y. Time-delayed phase-control for suppression of the flow-induced noise from an open cavity[J]. Applied Acoustics, 2008, 69(3): 215-224. |
20 | GAD-EL-HAK M. Flow control: Passive, active, and reactive flow management[M]. Cambridge: Cambridge University Press, 2000. |
21 | AKKERMANS R A D, STUERMER A, DELFS J W. Active flow control for interaction noise reduction of contra-rotating open rotors[J]. AIAA Journal, 2016, 54(4): 1413-1423. |
22 | 吴亚东, 竺晓程, 杜朝辉. 静子尾缘喷气后尾迹与动叶干涉噪声研究[J]. 工程热物理学报, 2009, 30(9): 1482-1484. |
WU Y D, ZHU X C, DU Z H. Investigation on interaction noise between stator wake and rotor with trailing edge blowing[J]. Journal of Engineering Thermophysics, 2009, 30(9): 1482-1484 (in Chinese). | |
23 | HU Z J, LIU H R. Investigation on vortex shedding and noise control of flow around cylinder by blowing and suction[C]∥ 2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM). Piscataway: IEEE Press, 2020: 1-10. |
24 | 徐枫. 结构流固耦合振动与流动控制的数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2009. |
XU F. Numerical simulation of fluid-solid coupling vibration and flow control of structures[D]. Harbin: Harbin Institute of Technology, 2009 (in Chinese). | |
25 | YOU D, CHOI H, CHOI M R, et al. Control of flow-induced noise behind a circular cylinder using splitter plates[J]. AIAA Journal, 1998, 36(11): 1961-1967. |
26 | SUKRI MAT ALI M, DOOLAN C J, WHEATLEY V. The sound generated by a square cylinder with a splitter plate at low Reynolds number[J]. Journal of Sound and Vibration, 2011, 330(15): 3620-3635. |
27 | SHI L, WANG W Q, ZHANG C C, et al. The effect of bionic V-ring surface on the aerodynamic noise of a circular cylinder[J]. Applied Mechanics and Materials, 2013, 461: 751-762. |
28 | ÜNAL U O, ATLAR M. An experimental investigation into the effect of vortex generators on the near-wake flow of a circular cylinder[J]. Experiments in Fluids, 2010, 48(6): 1059-1079. |
29 | HEINE B, SCHWERMER T, RAFFEL M. The effect of vortex generators on the flow around a circular cylinder[C]∥15th International Symposium on Application Laser Techniques to Fluid Mechanics. 2010. |
30 | 于彦泽, 刘景飞, 蒋增龑, 等. 大型飞机后体流动控制及减阻机理研究[J]. 空气动力学学报, 2011, 29(5): 640-644. |
YU Y Z, LIU J F, JIANG Z Y, et al. The investigation of flow control and drag reduction mechanism for transport airplane aft-body[J]. Acta Aerodynamica Sinica, 2011, 29(5): 640-644 (in Chinese). | |
31 | BACHMANN T, BLAZEK S, ERLINGHAGEN T, et al. Barn owl flight [M]∥TROPEA C, BLECKMANN H. Nature-inspired fluid mechanics. Berlin, Heidelberg: Springer, 2012: 101-117. |
32 | 仝帆, 乔渭阳, 王良锋, 等. 仿生学翼型尾缘锯齿降噪机理[J]. 航空学报, 2015, 36(9): 2911-2922. |
TONG F, QIAO W Y, WANG L F, et al. Noise reduction mechanism of bionic airfoil trailing edge serrations[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2911-2922 (in Chinese). | |
33 | 仝帆, 乔渭阳, 纪良, 等. 尾缘锯齿降低叶栅噪声的数值模拟[J]. 航空动力学报, 2016, 31(4): 894-902. |
TONG F, QIAO W Y, JI L, et al. Numerical simulation on noise reduction for the cascade with trailing edge serrations[J]. Journal of Aerospace Power, 2016, 31(4): 894-902 (in Chinese). | |
34 | WANG Y, ZHAO K, LU X Y, et al. Bio-inspired aerodynamic noise control: A bibliographic review[J]. Applied Sciences, 2019, 9(11): 2224. |
35 | 陈坤. 三种鸮形态学、飞行运动学特征规律及其仿生研究[D]. 长春: 吉林大学, 2012. |
CHEN K. Morphology, flight kinematics and bionics of silent flight owl[D]. Changchun: Jilin University, 2012 (in Chinese). | |
36 | GEYER T, SARRADJ E, FRITZSCHE C. Nature-inspired porous airfoils for sound reduction [M]∥TROPEA C, BLECKMANN H. Nature-inspired fluid mechanics. Berlin, Heidelberg: Springer, 2012: 355-370. |
37 | JOSLIN R D, THOMAS R H, CHOUDHARI M M. Synergism of flow and noise control technologies[J]. Progress in Aerospace Sciences, 2005, 41(5): 363-417. |
38 | 燕群, 薛东文, 高翔, 等. 飞机短舱声衬声学性能实验技术[J]. 航空学报, 2022, 43(6): 526810. |
YAN Q, XUE D W, GAO X, et al. Acoustic performance experimental technology of aircraft nacelle acoustic liner[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526810 (in Chinese). | |
39 | 霍施宇, 杨嘉丰, 邓云华, 等. 全尺寸短舱排气道声衬声学设计与试验验证[J]. 航空学报, 2022, 43(6): 526736. |
HUO S Y, YANG J F, DENG Y H, et al. Acoustic design and experimental verification of full-scale nacelle exhaust duct liner[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526736 (in Chinese). | |
40 | 盛美萍, 王敏庆, 孙进才. 噪声与振动控制技术基础[M]. 北京:科学出版社, 2001. |
SHENG M P, WANG M Q, SUN J C. Fundamentals of noise and vibration control technology [M]. Beijing: Science Press, 2001 (in Chinese). | |
41 | NIELD D A, BEJAN A. Convection in porous media[M]. New York: Springer New York, 2013. |
42 | 吕兆华. 泡沫型多孔介质等效导热系数的计算[J]. 南京理工大学学报(自然科学版), 2001, 25(3): 257-261. |
LYU Z H. Calculation of effective thermal conductivity of foam porous media[J]. Journal of Nanjing University of Science and Technology, 2001, 25(3): 257-261 (in Chinese). | |
43 | HUTTER C, ALLEMANN C, KUHN S, et al. Scalar transport in a milli-scale metal foam reactor[J]. Chemical Engineering Science, 2010, 65(10): 3169-3178. |
44 | BEAR J, BACHMAT Y. Introduction to modeling of transport phenomena in porous media[M]. Dordrecht: Kluwer Academic Publishers, 1990. |
45 | ASHBY M F. Metal foams: A design guide[M]. Oxford: Butterworth-Heinemann, 2000. |
46 | KRISHNAN S, MURTHY J Y, GARIMELLA S V. Direct simulation of transport in open-cell metal foam[J]. Journal of Heat Transfer, 2006, 128(8): 793-799. |
47 | MOHSEN KARIMIAN S A, STRAATMAN A G. CFD study of the hydraulic and thermal behavior of spherical-void-phase porous materials[J]. International Journal of Heat and Fluid Flow, 2008, 29(1): 292-305. |
48 | ANNAPRAGADA S R, MURTHY J Y, GARIMELLA S V. Permeability and thermal transport in compressed open-celled foams[J]. Numerical Heat Transfer, Part B: Fundamentals, 2008, 54(1): 1-22. |
49 | QU Z G, WANG T S, TAO W Q, et al. A theoretical octet-truss lattice unit cell model for effective thermal conductivity of consolidated porous materials saturated with fluid[J]. Heat and Mass Transfer, 2012, 48(8): 1385-1395. |
50 | XU C, MAO Y J, HU Z W. Numerical study of pore-scale flow and noise of an open cell metal foam[J]. Aerospace Science and Technology, 2018, 82/83: 185-198. |
51 | ARCONDOULIS E J G, LIU Y, LI Z Y, et al. Structured porous material design for passive flow and noise control of cylinders in uniform flow[J]. Materials, 2019, 12(18): 2905. |
52 | ARCONDOULIS E J G, GEYER T F, LIU Y. An acoustic investigation of non-uniformly structured porous coated cylinders in uniform flow[J]. The Journal of the Acoustical Society of America, 2021, 150(2): 1231-1242. |
53 | ARCONDOULIS E J G, GEYER T F, LIU Y. An investigation of wake flows produced by asymmetrically structured porous coated cylinders[J]. Physics of Fluids, 2021, 33(3): 037124. |
54 | KOPANIDIS A, THEODORAKAKOS A, GAVAISES E, et al. 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam[J]. International Journal of Heat and Mass Transfer, 2010, 53(11/12): 2539-2550. |
55 | BOWEN L, CELIK A, AZARPEYVAND M, et al. On the use of tailored permeable surfaces for turbulence interaction noise control:AIAA-2020-2530[R].Reston: AIAA, 2020. |
56 | ZHANG M H, CHONG T P. Experimental investigation of the impact of porous parameters on trailing-edge noise[J]. Journal of Sound and Vibration, 2020, 489: 115694. |
57 | RUBIO CARPIO A, AVALLONE F, RAGNI D, et al. Quantitative criteria to design optimal permeable trailing edges for noise abatement[J]. Journal of Sound and Vibration, 2020, 485: 115596. |
58 | GAVAISES M, KOPANIDIS A, THEODORAKAKOS A, et al. Numerical simulation of fluid flow and heat transfer with direct modelling of microscale geometry[C]∥Proceedings of the 5th European Thermal-Sciences Conference. 2008. |
59 | BOOMSMA K, POULIKAKOS D, VENTIKOS Y. Simulations of flow through open cell metal foams using an idealized periodic cell structure[J]. International Journal of Heat and Fluid Flow, 2003, 24(6): 825-834. |
60 | WEN K B, ARCONDOULIS E J G, LI Z Y, et al. Structure resolved simulations of flow around porous coated cylinders based on a simplified pore-scale model[J]. Aerospace Science and Technology, 2021, 119: 107181. |
61 | ARCONDOULIS E, LIU Y, YANG Y N, et al. Three dimensional internal and near-wall flow features of a structured porous coated cylinder:AIAA-2022-3038[R]. Reston: AIAA, 2022. |
62 | WHITAKER S. The Forchheimer equation: A theoretical development[J]. Transport in Porous Media, 1996, 25(1): 27-61. |
63 | XU W G, ZHANG H T, YANG Z M,et al. Numerical investigation on the flow characteristics and permeability of three-dimensional reticulated foam materials[J]. Chemical Engineering Journal, 2008, 140(1/2/3):562-569. |
64 | BEJAN A. Convection heat transfer[M]. 4th ed. Hoboken: Wiley, 2013. |
65 | SHARMA S, SIGINER D A. Permeability measurement methods in porous media: A review[C]∥ Proceedings of ASME 2008 International Mechanical Engineering Congress and Exposition. New York: ASME, 2008: 179-200. |
66 | DELLI M L, GROZIC J L H. Experimental determination of permeability of porous media in the presence of gas hydrates[J]. Journal of Petroleum Science and Engineering, 2014, 120: 1-9. |
67 | MOUSAVI S M R, JAFARI S, SCHAFFIE M, et al. Experimental study and modeling permeability damage in porous media due to asphaltene deposition[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107396. |
68 | WAGNER A, EGGENWEILER E, WEINHARDT F, et al. Permeability estimation of regular porous structures: A benchmark for comparison of methods[J]. Transport in Porous Media, 2021, 138(1): 1-23. |
69 | FAND R M, STEINBERGER T E, CHENG P. Natural convection heat transfer from a horizontal cylinder embedded in a porous medium[J]. International Journal of Heat and Mass Transfer, 1986, 29(1): 119-133. |
70 | FORCHHEIMER P H. Wasserbewegung durch Boden[J].Zeitschrift fur Acker und Pflanzenbau, 1901, 49: 1736-1749. |
71 | DULLIEN F A L. Porous media: Fluid transport and pore structure[M]. New York: Academic Press, 1979. |
72 | ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94. |
73 | TAMAYOL A, WONG K W, BAHRAMI M. Effects of microstructure on flow properties of fibrous porous media at moderate Reynolds number[J]. Physical Review E, 2012, 85(2): 026318. |
74 | TAMAYOL A, BAHRAMI M. Transverse permeability of fibrous porous media[J]. Physical Review E, 2011, 83(4): 046314. |
75 | CALMIDI V V. Transport phenomena in high porosity fibrous metal foams[D]. Boulder:University of Colorado, 1998. |
76 | HIGDON J J L, FORD G D. Permeability of three-dimensional models of fibrous porous media[J]. Journal of Fluid Mechanics, 1996, 308: 341-361. |
77 | RAHLI O, TADRIST L, MISCEVIC M, et al. Fluid flow through randomly packed monodisperse fibers: The Kozeny-Carman parameter analysis[J]. Journal of Fluids Engineering, 1997, 119(1): 188-192. |
78 | CARMAN P C. The determination of the specific surface of powders I[J].The Journal of the Society of Chemical Industries, 1938, 57: 225-234. |
79 | BHATTACHARYA A, CALMIDI V V, MAHAJAN R L. Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031. |
80 | JACKSON G W, JAMES D F. The hydrodynamic resistance of hyaluronic acid and its contribution to tissue permeability[J]. Biorheology, 1982, 19(1/2): 317-330. |
81 | BERGELIN O P, BROWN G A, HULL H L, et al. Heat transfer and fluid friction during viscous flow across banks of tubes—Ⅲ: A study of tube spacing and tube size[J]. Journal of Fluids Engineering, 1950, 72(6): 881-888. |
82 | GHADDAR C K. On the permeability of unidirectional fibrous media: A parallel computational approach[J]. Physics of Fluids, 1995, 7(11): 2563-2586. |
83 | PAPATHANASIOU T D, MARKICEVIC B, DENDY E D. A computational evaluation of the Ergun and Forchheimer equations for fibrous porous media[J]. Physics of Fluids, 2001, 13(10): 2795-2804. |
84 | BRUNEAU C H, MORTAZAVI I. Passive control of the flow around a square cylinder using porous media[J]. International Journal for Numerical Methods in Fluids, 2004, 46(4): 415-433. |
85 | BHATTACHARYYA S, SINGH A K. Reduction in drag and vortex shedding frequency through porous sheath around a circular cylinder[J]. International Journal for Numerical Methods in Fluids, 2011, 65(6): 683-698. |
86 | HUNTER C A, VIKEN S A, WOOD R M, et al. Advanced aerodynamic design of passive porosity control effectors[C]∥39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
87 | SUEKI T, IKEDA M, TAKAISHI T,et al. Application of porous material to reduce aerodynamic noise caused by a high-speed pantograph[C]∥Proceedings of INTER-NOISE and NOISE-CON Congress and Conference.2008. |
88 | SUEKI T, IKEDA M, TAKAISHI T. Aerodynamic noise reduction using porous materials and their application to high-speed pantographs[J]. Quarterly Report of RTRI, 2009, 50(1): 26-31. |
89 | SUEKI T, TAKAISHI T, IKEDA M, et al. Application of porous material to reduce aerodynamic sound from bluff bodies[J]. Fluid Dynamics Research, 2010, 42(1): 015004. |
90 | NAITO H, FUKAGATA K. Numerical simulation of flow around a circular cylinder having porous surface[J]. Physics of Fluids, 2012, 24(11): 117102. |
91 | GEYER T F, SARRADJ E. Circular cylinders with soft porous cover for flow noise reduction[J]. Experiments in Fluids, 2016, 57(3): 30. |
92 | AGUIAR J, YAO H D, LIU Y. Passive flow/noise control of a cylinder using metal foam[C]∥23rd International Congress on Sound and Vibration. 2016. |
93 | LIU F, GUO H, HU T X, et al. Experimental investigation on the aeroacoustics of circular cylinders covered with metal foam:AIAA-2016-2715[R]. Reston: AIAA, 2016. |
94 | LIU H R, WEI J J, QU Z G. Prediction of aerodynamic noise reduction by using open-cell metal foam[J]. Journal of Sound and Vibration, 2012, 331(7): 1483-1497. |
95 | LIU H R, WEI J J, QU Z G. The interaction of porous material coating with the near wake of bluff body[J]. Journal of Fluids Engineering, 2014, 136(2): 021302. |
96 | LIU H R, WEI J J. On the role of surface permeability for the control of flow around a circular cylinder[J]. Journal of Vibroengineering, 2016, 18(8): 5406-5415. |
97 | RUCK B, KLAUSMANN K, WACKER T. The flow around circular cylinders partially coated with porous media[C]∥AIP Conference Proceedings:1st International Conference on Achieving the Sustainable Development Coals. 2012: 49-54. |
98 | HU Z J, LIU H R, CHEN N S, et al. Vortex shedding noise and flow mode analysis of cylinder with full/partial porous coating[J]. Aerospace Science and Technology, 2020, 106: 106154. |
99 | ZHANG P K, LIU Y, LI Z Y, et al. Numerical study on reducing aerodynamic drag and noise of circular cylinders with non-uniform porous coatings[J]. Aerospace Science and Technology, 2020, 107: 106308. |
100 | LIU H R, AZARPEYVAND M, WEI J J, et al. Tandem cylinder aerodynamic sound control using porous coating[J]. Journal of Sound and Vibration, 2015, 334: 190-201. |
101 | LIU H R, AZARPEYVAND M. Passive control of tandem cylinders flow and noise using porous coating:AIAA-2016-2905[R].Reston: AIAA, 2016. |
102 | LIU H R, WANG Y G, WEI J J, et al. The importance of controlling the upstream body wake in tandem cylinders system for noise reduction[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(3): 517-531. |
103 | HOWE M S. On the added mass of a perforated shell, with application to the generation of aerodynamic sound by a perforated trailing edge[J]. Proceedings of the Royal Society of London A:Mathematical and Physical Sciences, 1979, 365(1721): 209-233. |
104 | REVELL J D, KUNTZ H L, BALENA F J,et al. Trailing-edge flap noise reduction by porous acoustic treatment[C]∥3rd AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 1997. |
105 | KHORRAMI M, CHOUDHARI M. Application of passive porous treatment to slat trailing edge noise:NASA/TM-2003-212416[R].Washington,D.C.:NASA, 2003. |
106 | ANGLAND D, ZHANG X, MOLIN N. Measurements of flow around a flap side edge with porous edge treatment[J]. AIAA Journal, 2009, 47(7): 1660-1671. |
107 | GEYER T, SARRADJ E, FRITZSCHE C. Measurement of the noise generation at the trailing edge of porous airfoils[J]. Experiments in Fluids, 2010, 48(2): 291-308. |
108 | GEYER T. Trailing edge noise generation of porous airfoils[D]. Cottbus: Brandenburg Technical University of Cottbus, 2011. |
109 | WANG Y, HAO N S, LU X Y, et al. Airfoil self-noise reduction by gradient distributed porous trailing edges[J]. Journal of Aerospace Engineering, 2021, 34(6): 04021075. |
110 | ROGER M, SCHRAM C, DE SANTANA L. Reduction of airfoil turbulence-impingement noise by means of leading-edge serrations and/or porous material:AIAA- 2013-2108[R].Reston: AIAA, 2013. |
111 | FINK M R, BAILEY D A. Model tests of airframe noise reduction concepts[C]∥6th Aeroacoustics Conference. Reston: AIAA, 1980. |
112 | WANG Y, TONG F, CHEN Z W, et al. Rod-airfoil interaction noise reduction using gradient distributed porous leading edges[J]. Applied Sciences, 2022, 12(10): 4941. |
113 | HERR M, REICHENBERGER J. In search of airworthy trailing-edge noise reduction means:AIAA-2011-2780[R].Reston: AIAA, 2011. |
114 | ZHOU P, ZHONG S Y, ZHANG X. On the effect of velvet structures on trailing edge noise:Experimental investigation and theoretical analysis[J]. Journal of Fluid Mechanics, 2021, 919: A11. |
115 | JAWORSKI J W, PEAKE N. Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls[J]. Journal of Fluid Mechanics, 2013, 723: 456-479. |
116 | FASSMANN B W, RAUTMANN C, EWERT R, et al. Prediction of porous trailing edge noise reduction via acoustic perturbation equations and volume averaging:AIAA-2015-2525[R]. Reston: AIAA, 2015. |
117 | GEYER T F, SARRADJ E. Trailing edge noise of partially porous airfoils:AIAA-2014-3039[R].Reston: AIAA, 2014. |
118 | BAE Y, JEONG Y E, MOON Y J. Effect of porous surface on the flat plate self-noise:AIAA-2009-3311[R]. Reston: AIAA, 2009. |
119 | KOH S R, MEINKE M, SCHROEDER W, et al. Noise sources of trailing-edge turbulence controlled by porous media:AIAA-2014-3038[R].Reston: AIAA, 2014. |
120 | SHOWKAT S A ALI, AZARPEYVAND M, ILÁRIO DA SILVA C R. Trailing-edge flow and noise control using porous treatments[J]. Journal of Fluid Mechanics, 2018, 850: 83-119. |
121 | SHOWKAT S A ALI, AZARPEYVAND M, ILÁRIO DA SILVA C R. Trailing edge bluntness noise reduction using porous treatments[J]. Journal of Sound and Vibration, 2020, 474: 115257. |
122 | SCHULZE J, SESTERHENN J. Optimal distribution of porous media to reduce trailing edge noise[J]. Computers & Fluids, 2013, 78: 41-53. |
123 | LIU H R, CHEN N S, HU Z J. Effects of non-uniform permeability on vortex shedding and noise control of blunt trailing edge[J]. AIP Advances, 2019, 9(8): 085018. |
124 | ZHOU B Y, KOH S R, GAUGER N R, et al. A discrete adjoint framework for trailing-edge noise minimization via porous material[J]. Computers & Fluids, 2018, 172: 97-108. |
125 | SARRADJ E, GEYER T. Noise generation by porous airfoils:AIAA-2007-3719[R].Reston: AIAA, 2007. |
126 | SUMESH C K, SARVOTHTHAMA JOTHI T J. Aerodynamic noise characteristics of a thin airfoil with line distribution of holes adjacent to the trailing edge[J]. International Journal of Aeroacoustics, 2019, 18(4/5): 496-516. |
127 | GE C J, ZHANG Z H, LIANG P, et al. Prediction and control of trailing edge noise based on bionic airfoil[J]. Science China Technological Sciences, 2014, 57(7): 1462-1470. |
128 | LI Y, WANG X N, CHEN Z W, et al. Experimental study of vortex-structure interaction noise radiated from rod-airfoil configurations[J]. Journal of Fluids and Structures, 2014, 51: 313-325. |
129 | 刘汉儒, 陈南树. 多孔渗透结构影响尾缘噪声的试验[J]. 航空学报, 2017, 38(6): 120746. |
LIU H R, CHEN N S. Test on effects of porous permeable section on trailing edge noise[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120746 (in Chinese). | |
130 | 刘汉儒, 王掩刚, 张俊. 尾缘多孔结构流动控制影响的数值研究[J]. 西北工业大学学报, 2017, 35(1): 103-108. |
LIU H R, WANG Y G, ZHANG J. Numerical simulation of the effects of porous-trailing-edge on flow control[J]. Journal of Northwestern Polytechnical University, 2017, 35(1): 103-108 (in Chinese). | |
131 | LIU H R, CHEN N S, WANG Y G, et al. Modification of flow structure and sound source by hybrid porous-serrated trailing edge[J]. Journal of Bionic Engineering, 2020, 17(3): 539-552. |
132 | ZHU J Y, ZHU F L, SU W D, et al. A vorticity dynamics view of “effective slip boundary” with application to foil-flow control[J]. Physics of Fluids, 2014, 26(12): 123602. |
133 | CHANAUD R C. Noise reduction in propeller fans using porous blades at free-flow conditions[J]. The Journal of the Acoustical Society of America, 1972, 51(1A): 15-18. |
134 | CHANAUD R C, KONG N, SITTERDING R B. Experiments on porous blades as a means of reducing fan noise[J]. The Journal of the Acoustical Society of America, 1976, 59(3): 564-575. |
135 | JONES M G, PARROTT T L, SUTLIFF D L, et al. Assessment of soft vane and metal foam engine noise reduction concepts:AIAA-2009-3142[R]. Reston: AIAA, 2009. |
136 | JIANG C Y, MOREAU D, YAUWENAS Y, et al. Control of rotor trailing edge noise using porous additively manufactured blades:AIAA-2018-3792[R]. Reston: AIAA, 2018. |
137 | SUTLIFF D, JONES M G. Foam-metal liner attenuation of low-speed fan noise:AIAA-2008-2897[R]. Reston: AIAA, 2008. |
138 | SUTLIFF D L, JONES M G. Low-speed fan noise attenuation from a foam-metal liner[J]. Journal of Aircraft, 2009, 46(4): 1381-1394. |
139 | SUTLIFF D L, JONES M G, HARTLEY T C. High-speed turbofan noise reduction using foam-metal liner over-the-rotor[J]. Journal of Aircraft, 2013, 50(5): 1491-1503. |
140 | BOZAK R F, DOUGHERTY R P. Measurement of noise reduction from acoustic casing treatments installed over a subscale high bypass ratio turbofan rotor:AIAA- 2018-4099[R]. Reston: AIAA, 2018. |
141 | XU C, MAO Y J, HU Z W. Tonal and broadband noise control of an axial-flow fan with metal foams: Design and experimental validation[J]. Applied Acoustics, 2017, 127: 346-353. |
142 | LIU N T, JIANG C Y, HUANG L X, et al. Effect of porous casing on small axial-flow fan noise[J]. Applied Acoustics, 2021, 175: 107808. |
143 | SUN D K, LI J, XU R Z, et al. Effects of the foam metal casing treatment on aerodynamic stability and aerocoustic noise in an axial flow compressor[J]. Aerospace Science and Technology, 2021, 115: 106793. |
[1] | Jinchao MA, Yang LU, Liangquan WANG, Kuihui SONG. Active control test of tiltrotor near-field aeroacoustics based on higher harmonic control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528602-528602. |
[2] | Qi LIU, Yongjie SHI, Zhiyuan HU, Guohua XU. Parameter effects analysis on aerodynamic and aeroacoustic characteristics of coaxial rigid rotor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528856-528856. |
[3] | Yuemeng MA, Ming LIU, Ding YANG, Ming YANG, Mingang ZHANG, Yajie GE. Prescribed performance and anti⁃noise control of near space vehicle with thermal constraint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729390-729390. |
[4] | Junlin LIU, Xihai XU, Zhicheng ZHANG, Xiaoqian CHEN. Simulation and analysis of noise reduction in high⁃temperature and high⁃speed rocket jet by water injection [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 127122-127122. |
[5] | Hang TONG, Liangji ZHANG, Ruibiao GAO, Weijie CHEN, Weiyang QIAO. Broadband noise fast evaluation method and its application in three dimensional design stage of fan [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 128606-128606. |
[6] | Fangcheng SHI, Zhenxun GAO, Yuyan TIAN, Chongwen JIANG, Tiantian WANG, Chun-Hian LEE. Large eddy simulation of ideally expanded supersonic jet noise [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626266-626266. |
[7] | ZHAO Kun, LIANG Junbiao, Ivan BELYAEV, Victor KOPIEV, Gareth BENNETT. Review of civil airplane landing gear noise study and its control approaches [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 26996-026996. |
[8] | YAN Qun, XUE Dongwen, GAO Xiang, YANG Jiafeng, HUANG Wenchao. Acoustic performance experimental technology of aircraft nacelle acoustic liner [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526810-526810. |
[9] | GU Jintao, WANG Xiaole, TANG Youheng, ZHOU Jie, HUANG Zhenyu. Laminated acoustic metamaterial for improving low-frequency broadband sound insulation of aircraft wall panels [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 224785-224785. |
[10] | LIU Jun, CAI Jinsheng, YANG Dangguo, SHI Ao, LU Bo. Research progress in wave evolution and noise control for supersonic cavity flows [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(11): 22366-022366. |
[11] | WANG Xiansheng, YANG Dangguo, LIU Jun, SHI Ao, ZHOU Fangqi, LYU Binbin. Test on interactions between aeroacoustic noise and structural vibration in elastic cavity flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(7): 120873-120873. |
[12] | LIU Hanru, CHEN Nanshu. Test on effects of porous permeable section on trailing edge noise [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(6): 120746-120746. |
[13] | ZHANG Zhenhui, LI Dong, YANG Yin. Passive flow control of multi-element airfoils using slat mini-trailing edge device [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(5): 120650-120650. |
[14] | XU Xihai, LI Xiaodong. Effect of farfield assumption on calculation of Green's function for predicting jet noise [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(9): 2699-2710. |
[15] | YU Lei, SONG Wenping, HAN Zhonghua, YAN Li. Aeroacoustic Noise Prediction Using Hybrid RANS/LES Method and FW-H Equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(8): 1795-1805. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341