Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (23): 428529-428529.doi: 10.7527/S1000-6893.2023.28529
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
Juan YANG1,2(), Jianghao NIU3, Qingsong ZHANG3
Received:
2023-02-06
Revised:
2023-03-03
Accepted:
2023-03-28
Online:
2023-12-15
Published:
2023-03-31
Contact:
Juan YANG
E-mail:haishi_yj11@126.com
Supported by:
CLC Number:
Juan YANG, Jianghao NIU, Qingsong ZHANG. In⁃situ explosion limit of thermal runaway gas explosion in cyclic aging lithium⁃ion batteries: Experimental analysis[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 428529-428529.
1 | CAO W P, MECROW B C, ATKINSON G J, et al. Overview of electric motor technologies used for more electric aircraft (MEA)[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3523-3531. |
2 | 林卫斌, 吴嘉仪. 碳中和愿景下中国能源转型的三大趋势[J]. 价格理论与实践, 2021(7): 21-23, 114. |
LIN W B, WU J Y. Three trends for China’s energy transition under the carbon neutrality vision[J]. Price (Theory & Practice), 2021(7): 21-23, 114 (in Chinese). | |
3 | YANG J A, BAO X W, YANG Z G. Load identification for the more electric aircraft distribution system based on intelligent algorithm[J]. Aerospace, 2022, 9(7): 350. |
4 | ROBOAM X, SARENI B, DE ANDRADE A. More electricity in the air: toward optimized electrical networks embedded in more-electrical aircraft[J]. IEEE Industrial Electronics Magazine, 2012, 6(4): 6-17. |
5 | 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68. |
HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68 (in Chinese). | |
6 | SAEVARSDOTTIR G, TAO P C, STEFANSSON H, et al. Potential use of geothermal energy sources for the production of lithium-ion batteries[J]. Renewable Energy, 2014, 61: 17-22. |
7 | CARDONE M, GARGIULO B, FORNARO E. Modelling and experimental validation of a hybrid electric propulsion system for light aircraft and unmanned aerial vehicles[J]. Energies, 2021, 14(13): 3969. |
8 | JOHNSON W, SILVA C. NASA concept vehicles and the engineering of advanced air mobility aircraft[J]. The Aeronautical Journal, 2022, 126(1295): 59-91. |
9 | 韩玉琪, 朱大明, 付玉, 等. 2022电动垂直起降飞行器主要进展[J]. 航空动力, 2023(1): 19-22. |
HAN Y Q, ZHU D M, FU Y, et al. Main progress of electric vertical takeoff and landing vehicle in 2022[J]. Aerospace Power, 2023(1): 19-22 (in Chinese). | |
10 | 杨凤田, 范振伟, 项松, 等. 中国电动飞机技术创新与实践[J]. 航空学报, 2021, 42(3): 624619. |
YANG F T, FAN Z W, XIANG S, et al. Technical innovation and practice of electric aircraft in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624619 (in Chinese). | |
11 | 纪宇晗, 孙侠生, 俞笑, 等. 双碳战略下的新能源航空发展展望[J]. 航空科学技术, 2022, 33(12): 1-11. |
JI Y H, SUN X S, YU X, et al. Development prospect of new energy aviation under the double carbon strategy[J]. Aeronautical Science & Technology, 2022, 33(12): 1-11 (in Chinese). | |
12 | ALEXANDER R, MEYER D, WANG J K. A comparison of electric vehicle power systems to predict architectures, voltage levels, power requirements, and load characteristics of the future all-electric aircraft[C]∥2018 IEEE Transportation Electrification Conference and Expo (ITEC). Piscataway: IEEE Press, 2018: 194-200. |
13 | LV F, WANG Z Y, SHI L Y, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. Journal of Power Sources, 2019, 441: 227175. |
14 | TARIQ M, MASWOOD A I, GAJANAYAKE C J, et al. Aircraft batteries: current trend towards more electric aircraft[J]. IET Electrical Systems in Transportation, 2017, 7(2): 93-103. |
15 | GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges[J]. Applied Energy, 2019, 251: 113343. |
16 | CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: 228649. |
17 | SC-225 RTCA Inc. Minimum operational performance standards for rechargeable lithium batteries and battery systems: RTCA DO-311A [S]. Washinton, D. C.: Radio Technical Commission for Aeronautics, 2017. |
18 | ANON. Aircraft incident report: Auxiliary power unit battery fire, Japan airlines Boeing 787-8, JA829J, Boston, Massachusetts, January 7, 2013[R]. Washington, D. C.: National Transportation Safety Board, 2014. |
19 | WILLIARD N, HE W, HENDRICKS C, et al. Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability[J]. Energies, 2013, 6(9): 4682-4695. |
20 | Eviation电动飞机测试中起火. 电动航空报道[EB/OL]. (2020-01-22) [2020-01-30]. . |
Fire in Eviation electric aircraft test. E-Flight-Expo [EB/OL]. (2020-01-22)[2020-01-30]. (in Chinese). | |
21 | FAA. Lithium batteries & lithium battery-powered devices[R]. Washington, D. C.: Federal Aviation Administration, 2019. |
22 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
23 | ZHANG L W, ZHAO P, XU M, et al. Computational identification of the safety regime of Li-ion battery thermal runaway[J]. Applied Energy, 2020, 261: 114440. |
24 | XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111437. |
25 | WERFELMAN L. Testing the limits: The NTSB calls for new tests to prove lithium-ion battery installations in aircraft can mitigate hazards tied to thermal runaway[J]. Aerosafety World, 2014, 9: 41-43. |
26 | LIU L, LIN C J, FAN B, et al. A new method to determine the heating power of ternary cylindrical lithium ion batteries with highly repeatable thermal runaway test characteristics[J]. Journal of Power Sources, 2020, 472: 228503. |
27 | 张青松, 曲奕润, 郝朝龙, 等. 三元锂离子电池热失控气体原位分析[J]. 高电压技术, 2022, 48(7): 2817-2825. |
ZHANG Q S, QU Y R, HAO C L, et al. In⁃situ analysis of thermal runaway gas in ternary lithium-ion battery[J]. High Voltage Engineering, 2022, 48(7): 2817-2825 (in Chinese). | |
28 | WANG J G, MEI W X, CUI Z X, et al. Experimental and numerical study on penetration-induced internal short-circuit of lithium-ion cell[J]. Applied Thermal Engineering, 2020, 171: 115082. |
29 | SHAN T X, WANG Z P, ZHU X Q, et al. Explosion behavior investigation and safety assessment of large-format lithium-ion pouch cells[J]. Journal of Energy Chemistry, 2022, 72: 241-257. |
30 | JIANG F W, LIU K, WANG Z R, et al. Theoretical analysis of lithium-ion battery failure characteristics under different states of charge[J]. Fire and Materials, 2018, 42(6): 680-686. |
31 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
32 | CHEN M Y, OUYANG D X, LIU J H, et al. Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package[J]. Applied Thermal Engineering, 2019, 157: 113750. |
33 | ZHANG Q S, NIU J H, ZHAO Z H, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: 103759. |
34 | CHEN S C, WANG Z R, WANG J H, et al. Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 103992. |
35 | LI W F, WANG H W, ZHANG Y J, et al. Flammability characteristics of the battery vent gas: A case of NCA and LFP lithium-ion batteries during external heating abuse[J]. Journal of Energy Storage, 2019, 24: 100775. |
36 | 张青松, 赵启臣. 过充循环对锂离子电池老化及安全性影响[J]. 高电压技术, 2020, 46(10): 3390-3397. |
ZHANG Q S, ZHAO Q C. Effects of overcharge cycling on the aging and safety of lithium ion batteries[J]. High Voltage Engineering, 2020, 46(10): 3390-3397 (in Chinese). | |
37 | LIU J L, DUAN Q L, PENG W, et al. Slight overcharging cycling failure of commercial lithium-ion battery induced by the jelly roll destruction[J]. Process Safety and Environmental Protection, 2022, 160: 695-703. |
38 | WU Y, SAXENA S, XING Y J, et al. Analysis of manufacturing-induced defects and structural deformations in lithium-ion batteries using computed tomography[J]. Energies, 2018, 11(4): 925. |
39 | WALDMANN T, GORSE S, SAMTLEBEN T, et al. A mechanical aging mechanism in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(10): A1742-A1747. |
40 | REN D S, HSU H, LI R H, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation, 2019, 2: 100034. |
[1] | Kai SONG, Chi ZHANG, Chenhui YAN, Ning NING, Junling FAN, Rongbiao WANG. Reliability of aero-engine wheel model assisted eddy current testing based on two-parameter representation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 227866-227866. |
[2] | SHANG Yong, FENG Yang, LIU Qiaomu, WANG Junwu, YANG Huijun, RU Yi, ZHANG Heng, ZHAO Wenyue, PEI Yanling, LI Shusuo, GONG Shengkai. Research and application of large scientific facility on high-temperature structural materials and coatings of aero-engine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527481-527481. |
[3] | ZHAO Benyong, SONG Kai, NING Ning, HUANG Huabin, ZHANG Lipan. Optimization and experimentation of remote field eddy current testing probe for hidden defects of aircraft riveting parts [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 423111-423111. |
[4] | REN Shangkun, ZU Ruili. Fatigue test of welds with defects based on magnetic memory technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(3): 422454-422454. |
[5] | HU Bo, YU Runqiao, XU Weijin. Micro-magnetic NDT for surface crack defect in a GH4169 turbine disc simulated by artificial groove [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(10): 3450-3456. |
[6] | ZHOU Zhenggan, SUN Guangkai, CHEN Xiucheng, WANG Jie. Quantitative Characterization Test of Fastening Hole Delamination in Composites with Laser Ultrasonics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(8): 2348-2354. |
[7] | XING Yalan, WANG Shengbin, ZHANG Shichao, WANG Wenxu. Research on New Three-dimensional Nanostructured Anode Materials for Lithium-ion Batteries [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(10): 2776-2783. |
[8] | CHEN Xiongzi, YU Jinsong, TANG Diyin, WANG Yingxun. Probabilistic Residual Life Prediction for Lithium-ion Batteries Based on Bayesian LS-SVR [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(9): 2219-2229. |
[9] | XU Na, ZHOU Zhenggan, LIU Weiping, ZHOU Hui, YU Guang. Ultrasonic Phased Array Inspection Method for the Corner of L-shaped Components [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(2): 419-425. |
[10] | GUO Xingwang, ZHANG Feifei, LIU Yingtao. Study on Pulsed Thermography for Water Ingress Detection in Composite Honeycomb Panels [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, (6): 1134-1146. |
[11] | Guo Xingwang;Ding Mengmeng. Simulation of Thermal NDT of Thickness and Its Unevenness of Thermal Barrier Coatings [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(1): 198-203. |
[12] | Key Laboratory of Nondestructive Testing;Ministry of Education;Nanchang Hangkong University Beijing Institute of Structure and Environment Engineering. New Magnetic Memory Testing Method of Aeronautical Ferromagnetic Material [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(11): 2224-2228. |
[13] | ZHOU Zheng-gan;ZHAO Sheng;AN Zhen-gang. Defect Extraction of X-ray Images Based on Subarea and Self-adaptive Median Filtering [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2004, 25(4): 420-424. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341