1 |
赵瑾, 孙向春, 张俊, 等. 热防护材料气固界面传热传质问题研究进展[J]. 航空学报, 2022, 43(10): 527577.
|
|
ZHAO J, SUN X C, ZHANG J, et al. Research advances on heat and mass transfer coupling effect at gas-solid interface for thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527577 (in Chinese).
|
2 |
时圣波, 唐硕, 梁军. 临近空间飞行器防隔热/承载一体化热结构设计及力/热行为[J]. 装备环境工程, 2020, 17(1): 36-42.
|
|
SHI S B, TANG S, LIANG J. Design and themomechanical behavior of full-composite structurally integrated thermal protection structure for near space vehicles[J]. Equipment Environmental Engineering, 2020, 17(1): 36-42 (in Chinese).
|
3 |
PICHON T, SOYRIS P, FOUCAULT A, et al. Thermal protection systems technologies for re-entry vehicles [C]∥ Proceedings of 14th AIAA/AHI Space Planes & Hypersonic Systems & Technologies Conference. Reston: AIAA, 2006: AIAA 2006-7950.
|
4 |
解维华, 韩国凯, 孟松鹤, 等. 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019, 40(8): 022792.
|
|
XIE W H, HAN G K, MENG S H, et al. Development status and trend of thermal protection structure for return capsules and space probes[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 022792 (in Chinese).
|
5 |
周印佳, 张志贤, 付新卫, 等. 再入飞行器烧蚀热防护一体化计算方法[J]. 航空学报, 2021, 42(7): 124520.
|
|
ZHOU Y J, ZHANG Z X, FU X W, et al. Integrated computing method for ablative thermal protection system of reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124520 (in Chinese).
|
6 |
艾邦成, 陈思员, 韩海涛, 等. 疏导式热防护结构传热极限特性[J]. 航空学报, 2021, 42(2): 623989.
|
|
AI B C, CHEN S Y, HAN H T, et al. Heat transfer limit characteristics of integrated dredging thermal protection structure[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 623989 (in Chinese).
|
7 |
UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356.
|
8 |
周星光, 柳世灵, 王通, 等. SiO2气凝胶隔热性能的影响因素研究[J]. 装备环境工程, 2022, 19(5): 94-99.
|
|
ZHOU X G, LIU S L, WANG T, et al. Influence factor of thermal insulation performance of SiO2 aerogel[J]. Equipment Environmental Engineering, 2022, 19(5): 94-99 (in Chinese).
|
9 |
郑凯, 饶炜, 向艳超, 等. 火星着陆发动机气凝胶材料热防护装置设计[J]. 航空学报, 2022, 43(3): 626568.
|
|
ZHENG K, RAO W, XIANG Y C, et al. Design of aerogel-based thermal protector for Mars landing engine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 626568 (in Chinese).
|
10 |
POOVATHINGAL S, STERN E C, NOMPELIS I, et al. Nonequilibrium flow through porous thermal protection materials, Part II: oxidation and pyrolysis[J]. Journal of Computational Physics, 2019, 380: 427-441.
|
11 |
NATALI M, KENNY J M, TORRE L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review[J]. Progress in Materials Science, 2016, 84: 192-275.
|
12 |
YANG D, ZHANG W, JIANG B Z, et al. Silicone rubber ablative composites improved with zirconium carbide or zirconia[J]. Composites Part A: Applied Science and Manufacturing, 2013, 44: 70-77.
|
13 |
POLSGROVE T, PERCY T K, SUTHERLIN S, et al. Human Mars entry, descent, and landing architecture study: deployable decelerators[C]∥ Proceedings of the 2018 AIAA SPACE and Astronautics Forum and Exposition. Reston: AIAA, 2018: AIAA 2018-5191.
|
14 |
王百亚, 王秀云, 张炜. 一种航天器用外热防护涂层材料研究[J]. 固体火箭技术, 2005, 28(3): 216-218, 227.
|
|
WANG B Y, WANG X Y, ZHANG W. Study on an external thermal protection coating material for spacecraft[J]. Journal of Solid Rocket Technology, 2005, 28(3): 216-218, 227 (in Chinese).
|
15 |
FRIEDMAN H L. Kinetics and gaseous products of thermal decomposition of polymers[J]. Journal of Macromolecular Science: Part A - Chemistry, 1967, 1(1): 57-79.
|
16 |
KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706.
|
17 |
FLYNN J H, WALL L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Journal of Polymer Science Part B: Polymer Letters, 1966, 4(5): 323-328.
|
18 |
COATS A W, REDFERN J P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201(4914): 68-69.
|
19 |
BALAJI R, SASIKUMAR M, ELAYAPERUMAL A. Thermal, thermo oxidative and ablative behavior of cenosphere filled ceramic/phenolic composites[J]. Polymer Degradation and Stability, 2015, 114: 125-132.
|
20 |
YU B, TILL V, THOMAS K. Modeling of thermo-physical properties for FRP composites under elevated and high temperature[J]. Composites Science and Technology, 2007, 67(15-16): 3098-3109.
|
21 |
TORRE L, KENNY J M, MAFFEZZOLI A M. Degradation behaviour of a composite material for thermal protection systems, Part II: Process simulation[J]. Journal of Materials Science, 1998, 33(12): 3145-3149.
|
22 |
BAHRAMIAN A R, KOKABI M, FAMILI M H N, et al. Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: Process modeling and experimental[J]. Polymer, 2006, 47(10): 3661-3673.
|
23 |
WANG Y Q, RISCH T K, KOO J H. Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator[J]. Aerospace Science and Technology, 2019, 91: 301-309.
|
24 |
王湘阳, 年永乐, 刘娜, 等. 考虑C-SiO2反应的新型硅基材料烧蚀分析模型[J]. 化工学报, 2021, 72(6): 3270-3277.
|
|
WANG X Y, NIAN Y L, LIU N, et al. Novel ablation model of silica-reinforced composites considering C-SiO2 reaction[J]. CIESC Journal, 2021, 72(6): 3270-3277 (in Chinese).
|
25 |
王湘阳. 炭化材料烧蚀机理与热导率预测方法研究[D]. 合肥: 中国科学技术大学, 2021.
|
|
WANG X Y. Study on ablation mechanism and thermal conductivity inversion of charring material[D].Hefei: University of Science and Technology of China, 2021 (in Chinese).
|
26 |
SHI S B, LEI B, LI M Y, et al. Thermal decomposition behavior of a thermal protection coating composite with silicone rubber: Experiment and modeling[J]. Progress in Organic Coatings, 2020, 143: 105609.
|