Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (17): 28165-028165.doi: 10.7527/S1000-6893.2023.28165
• Reviews • Previous Articles Next Articles
Feng HE, Ershuai LI, Xuan ZHOU(), Luxi ZHAO
Received:
2022-10-25
Revised:
2022-11-14
Accepted:
2023-01-14
Online:
2023-09-15
Published:
2023-02-10
Contact:
Xuan ZHOU
E-mail:lomoo@buaa.edu.cn
Supported by:
CLC Number:
Feng HE, Ershuai LI, Xuan ZHOU, Luxi ZHAO. A review of airborne time sensitive networking[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 28165-028165.
Table 1
Technical summary of typical COTS switch networking solution
技术特征 | FC-AE | 标准以太网 | AFDX | TTE | TSN |
---|---|---|---|---|---|
组网特征 | 面向航空机载组网的标准 | 面向各种组网应用,包括嵌入式和互联网的IEEE网络标准 | 面向航空机载组网的ARINC组网标准 | 面向混合关键实时应用的SAE网络标准 | 面向车载、工业互联网等领域的实时网络协议 |
实际应用 | 美军F35航电系统 | 每个行业,包括航空航天 | A380/350、B787航电系统 | NASA火星探测项目 | 汽车电子控制领域、工厂自动化控制 |
物理介质 | 光缆 | 电缆/光缆 | 电缆/光缆 | 电缆/光缆 | 电缆/光缆 |
通信速率 | 266/512 MHz,1G/2G/4 Gbps | 1G/10 Gbps, 路线图支持100 Gbps | 现行标准为100 Mbps,正在研究1 Gbps | 100 Mbps/1 Gbps, 可支持10 Gbps | 100 Mbps/1 Gbps, 已演示10 Gbps以上带宽 |
组网拓扑 | 点对点/逻辑环/交换式 | 点对点/总线/交换式 | 点对点/交换式 | 点对点/交换式 | 点对点/总线/交换式 |
NoC支持 | 支持基于通道模式的传输 | 可以 | 无 | 轻量式剪裁预期支持 | 潜在支持 |
时钟同步 | 无,上层定义 | 无,上层定义 | 无, 定制VL授时同步 | AS6802同步, 分布式域同步 | 集中式主从同步 |
流控机制 | 信用量控制结合FC-AE上层具体协议 | 无,优先级调度 | 带宽整形 | 时分多路/带宽整形 | CBS/TAS/ATS等 |
通信机制 | 事件触发 | 事件触发 | 事件触发 | 时间触发 | 时间触发/事件触发 |
实时性能 | 依赖于设计 | 无确定性保障 | 实时(依赖于设计) | 强实时 | 实时 (取决于流控机制) |
冗余配置 | 双冗余/混合异构冗余 | 无 | 双冗余网络 | 多冗余网络 | 支持冗余路径 |
供应链 | 开放标准,但终端和交换机供应商有限 | 广泛 | 仅航空相关行业供应商 | 开放标准,但终端和交换机供应商有限 | 潜在多家供应商 |
安全认证 | 无 | 无 | FAA/EASA/CAA认证 | 已开发安全关键用例,EASA认证 | 正在开发用于认证的航空航天协议子集 |
控制管理 | 静态配置,经扩展支持网络管理 | 多种网络管理模型,动态自适应资源管控 | 静态配置,支持SNMP网络管理 | 静态配置,已演示支持SNMP网络管理 | 三种控制模型,支持在线配置,可支持SNMP网络管理 |
Table 2
Main standards defined by the TSN task group
类别 | 标准名称 | 发布年份 | 简称 |
---|---|---|---|
时钟同步 | Timing and Synchronization for Time-Sensitive Applications | 2020 | IEEE 802.1AS-2020 |
确定性流控 | Forwarding and Queuing Enhancements for Time-Sensitive Streams | 2009 | IEEE 802.1Qav |
Enhancements for Scheduled Traffic | 2015 | IEEE 802.1Qbv | |
Frame Preemption | 2016 | IEEE 802.1Qbu | |
Cyclic Queuing and Forwarding | 2017 | IEEE 802.1Qch | |
Asynchronous Traffic Shaping | 2020 | IEEE 802.1Qcr | |
网络配置与管理 | Stream Reservation Protocol Enhancements and Performance Improvements | 2018 | IEEE 802.1Qcc |
可靠性与安全性 | Frame Replication and Elimination for Reliability | 2017 | IEEE 802.1CB |
Per-Stream Filtering and Policing | 2017 | IEEE 802.1Qci | |
典型场景参考 | TSN Profile for Automotive In-Vehicle Ethernet Communications | 待发布 | IEEE P802.1DG |
IEC/IEEE 60802 TSN Profile for Industrial Automation | 待发布 | IEC/IEEE 60802 |
Table 3
Comparison of features of TSN scheduling algorithms based on time-triggered communication
流控机制 | 调度算法 | 优化目标 | 求解方式 | 适用规模 |
---|---|---|---|---|
TAS | Craciunas等[ | 占用队列数 | SMT/OMT(增量式) | 100条流量/1 394个数据帧(超过4 h) |
TAS | Durr等[ | 保护带宽 | 禁忌搜索 | 1 500条流量(3.2 h) |
TAS | Farzaneh等[ | 无 | SMT | 100条流量(4 min以内) 更多流量(所需时间指数型增长) |
TAS | Schweissguth[ | 传输延迟 | ILP(联合路由) | 52条流量(22 min以内) |
TAS | Serna Oliver等[ | 接收抖动 | SMT/OMT | 50条流量/211个数据帧(超过40 h) |
TAS | Steiner等[ | 无 | SMT | 50条流量/175个数据帧(10 ms/1个窗口~1 h/5个窗口) |
TAS | Heilmann等[ | 保护带宽 | 考虑优先级的手动求解 | 未形成自动化调度工具 |
TAS | Santos等[ | 无 | SMT | 5条流量/10个发布者+73个订阅者(80 h以内) |
TAS | Jin等[ | GCL调度条目 | SMT、OMT、启发式 | SMT:100条流量(超过48 h) OMT:10 000条流量(小于48 h) 启发式:8 000条流量(两种启发式算法分别在1 min以内或1 h) |
TAS | Falk等[ | 流量冲突图中独立配置顶点数 | ILP(联合路由) | 200条流量(53 min以内) |
TAS | Reusch等[ | 时间窗口的占用率 | 启发式 | 16条流量(20 s以内) |
TAS | Atallah等[ | 分组策略优化组间流量冲突度 | ILP(分组增量式) | 480条流量(40 min) |
TAS | Schweissguth等[ | 路由和调度权衡:流延迟最小、 具有最优差距的延迟最小、 具有最小次要延迟的最短路径 | ILP(联合路由) | 40条流量(21 min以内) |
TAS | Zhang等[ | 占用队列数和带宽利用率 | 适用于优先级约束背包问题的动态规划求解 | 255条流量(可支持) |
TAS | Vlk等[ | 占用队列数和传输延迟 | ILP(增量式) | 1 910条流量(10 min内可调度88.5%) |
TAS | Li等[ | 无 | SMT | 50条流量(33 min以内) |
TAS | Wang等[ | 传输延迟 | 蚁群算法(联合路由) | 100条流量(80 s以内) |
TAS | Tu等[ | 无 | 半监督学习(分组增量式) | 多组流量规模(可调度86.6%) |
TAS | Houtan等[ | 考虑BE流量服务质量:最大化调度时刻、稀疏调度与均匀稀疏调度 | OMT | 10条流量(20 min以内) |
TAS | Vlk等[ | 占用队列数和传输延迟 | CP(联合路由) | 300条流量(1 h以内可调度54.7%) |
TAS | Jia等[ | 传输延迟 | 深度强化学习(增量式) | 1 000条流量(每条流量100 ms以内) |
TAS | Xu等[ | 分组策略优化组间流量冲突度 | 基于学习(分组增量式) | 80条流量(17 min以内) |
TAS | Yuan等[ | 传输延迟 | 启发式 | 30条流量(可支持) |
TAS | Vlk等[ | 无 | 启发式 | 10 812条流量/93 814个数据帧(1 h以内) |
TAS | Zhou等[ | 无 | SMT增量式 | 200条流量(7 min以内) |
TAS+CBS | Pop等[ | 占用队列数 | ILP | 小规模流量求解快;不适应大规模案例 |
TAS+CBS | Raagaard等[ | 占用队列数和传输延迟 | ILP、ASAP、GRASP | ILP:100个数据帧(超过4 h) ASAP、GRASP:1 000个数据帧(1 min以内) |
TAS+CBS | Gavrilut等[ | CDT流量的占用队列数和传输延迟,AVB流量的最坏延迟 | GRASP(联合路由) | 427条CDT流量+464条AVB流量(9 min以内) |
TAS+CBS | Gavrilut等[ | 传输延迟 | 禁忌搜索 | 186条流量(12.5 h) |
CQF | Jiang等[ | 可调度流数量 | 贪心算法 | 140条流量(可支持) |
CQF | Yan等[ | 可调度流数量 | 禁忌搜索 | 2 000条流量(30 min以内) |
CQF | Guo等[ | 可调度流数量 | 启发式 | 500条流量(2 min以内) |
CQF | Liu等[ | 路由策略优化链路带宽利用率 | 强化学习(联合路由) | 7 000条流量(可支持),9 000条流量(可调度40%) |
CQF | Zhang等[ | 传输时隙的负载均衡 | 并行算法(增量式) | 400条流量(3 min以内) |
Table 4
Comparison of performance of different shaping mechanisms of TSN
协议 | 传输特点 | 积压边界 | 延迟边界 | 抖动边界 | 配置复杂度 |
---|---|---|---|---|---|
IEEE 802.1Qbv TAS | 全网时钟同步传输 | 低 | 极低 | 极低 | 高,更适合静态,在适应大规模和动态网络有难度 |
IEEE 802.1Qav CBS | 异步传输 | 较高 | 高,带宽分配对延迟边界影响大 | 高 | 较低,可基于不同流量类别实现带宽预留 |
IEEE 802.1Qcr ATS | 节点时钟异步传输 | 高 | 对高负载量/低优先级的整形效果明显,延迟较低;对低负载量/高优先级流量具有负向的整形效果,延迟高 | 高 | 低,适合于动态 |
IEEE 802.1Qch CQF | 全网时钟同步/异步传输 | 较低 | 端到端延迟基于循环周期的配置,容易计算,独立于拓扑 | 较低 | 较高,适合于动态;广域网应用受限 |
IEEE 802.1Q SP | 异步传输 | 较高 | 较高 | 高 | 较低,适合于动态严格优先级 |
Table 5
Tailor of TSN for aerospace
协议 | 目标 | 依据 | 机载组网需求 |
---|---|---|---|
IEEE 802.1AS | 强制 | 基于时间分配和同步以及故障检测隔离和恢复 | 可靠性和安全性 |
IEEE 802.1Qci | 强制 | 第二层数据链路层的策略以及QoS相关的管理 | 可靠性和安全性 |
IEEE 802.1CB | 强制 | 网络和系统的可用性(RASM) | 可靠性和安全性 |
IEEE 802.1 Qbv | 强制 | 针对调度流量 | 确定性和混合关键保障 |
IEEE 802.1Qav | 强制 | 对于有服务质量需求的流量 | 确定性和混合关键保障/带宽和吞吐量 |
IEEE 802.1Qcr | 强制 | 对于有服务质量需求的流量 | 确定性和混合关键保障 |
IEEE 802.1 Qcc | 强制 | 静态配置部分是必要的 | 体系化融合与混合组网 |
IEEE 802.1Qbu & IEEE 802.3br | 待定 | 对于高链路带宽(比如1 Gbps以上)是没有必要的 | 确定性和混合关键保障 |
IEEE 802.1Qch | 待定 | 实际上是其它标准的一个组合 | 确定性和混合关键保障 |
IEEE 802.1 Qat &IEEE 802.1 Qcc | 不需要 | 动态(重新)配置,目前非必要 | 重构与在线配置 |
IEEE 802.1 Qca | 不需要 | 动态(重新)配置,目前非必要 | 重构与在线配置 |
IEEE 802.1 Qcc | 不需要 | 动态(重新)配置,目前非必要 | 重构与在线配置 |
1 | 何锋, 李二帅, 周璇, 等. 机载网络时间触发通信调度设计优化与评价方法[J]. 航空学报, 2021, 42(7): 324258. |
HE F, LI E S, ZHOU X, et al. Design optimization and evaluation method for time-triggered communication scheduling in airborne networks[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 324258 (in Chinese). | |
2 | ASHJAEI M, BELLO L LO, DANESHTALAB M, et al. Time-Sensitive Networking in automotive embedded systems: state of the art and research opportunities[J]. Journal of Systems Architecture, 2021, 117: 102137. |
3 | BELLO L LO, STEINER W. A perspective on IEEE time-sensitive networking for industrial communication and automation systems[J]. Proceedings of the IEEE, 2019, 107(6): 1094-1120. |
4 | IEEE. TSN Profile for Industrial Automation: [S/OL]. [2022-09-20]. . |
5 | IEEE. TSN Profile for Automotive In-Vehicle Ethernet Communications: IEEE P802.1DG [S/OL]. [2022-09-20]. |
6 | STANTON K B. Distributing deterministic, accurate time for tightly coordinated network and software applications: IEEE 802.1 AS, the TSN profile of PTP[J]. IEEE Communications Standards Magazine, 2018, 2(2): 34-40. |
7 | SCHÖNWÄLDER J, BJÖRKLUND M, SHAFER P. Network configuration management using NETCONF and YANG[J]. IEEE Communications Magazine, 2010, 48(9): 166-173. |
8 | ADNAN M. Exact worst-case communication delay analysis of AFDX network[D/OL]. [2022-09-20]. . |
9 | TĂMAŞ-SELICEAN D, POP P, STEINER W. Design optimization of TTEthernet-based distributed real-time systems[J]. Real-Time Systems, 2015, 51(1): 1-35. |
10 | 熊华钢, 周贵荣, 李峭. 机载总线网络及其发展[J]. 航空学报, 2006, 27(6):1135-1144. |
XIONG H G, ZHOU G R, LI Q. A survey on avionics bus and network interconnections and their progress[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6): 1135-1144 (in Chinese). | |
11 | ASHJAEI M, PATTI G, BEHNAM M, et al. Schedulability analysis of Ethernet Audio Video Bridging networks with scheduled traffic support[J]. Real-Time Systems, 2017, 53(4): 526-577. |
12 | CAO J Y, ASHJAEI M, CUIJPERS P J L, et al. An independent yet efficient analysis of bandwidth reservation for credit-based shaping[C]∥2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). Piscataway: IEEE Press, 2018: 1-10. |
13 | LI E S, HE F, LI Q, et al. Bandwidth allocation of stream-reservation traffic in TSN[J]. IEEE Transactions on Network and Service Management, 2022, 19(1): 741-755. |
14 | SPECHT J, SAMII S. Synthesis of queue and priority assignment for asynchronous traffic shaping in switched Ethernet[C]∥2017 IEEE Real-Time Systems Symposium (RTSS). Piscataway: IEEE Press, 2018: 178-187. |
15 | PRADOS-GARZON J, TALEB T, BAGAA M. LEARNET: reinforcement learning based flow scheduling for asynchronous deterministic networks[C]∥2020 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2020: 1-6. |
16 | CRACIUNAS S S, OLIVER R S, CHMELÍK M, et al. Scheduling real-time communication in IEEE 802.1Qbv time sensitive networks[C]∥Proceedings of the 24th International Conference on Real-Time Networks and Systems. New York: ACM, 2016: 183-192. |
17 | LI Q, LI D, JIN X, et al. A simple and efficient time-sensitive networking traffic scheduling method for industrial scenarios[J]. Electronics, 2020, 9(12): 2131. |
18 | HOUTAN B, ASHJAEI M, DANESHTALAB M, et al. Synthesising schedules to improve QoS of best-effort traffic in TSN networks[C]∥Proceedings of the 29th International Conference on Real-Time Networks and Systems. New York: ACM, 2021: 68-77. |
19 | JIN X, XIA C Q, GUAN N, et al. Real-time scheduling of massive data in time sensitive networks with a limited number of schedule entries[J]. IEEE Access, 2020, 8: 6751-6767. |
20 | PANG Z Y, HUANG X, LI Z H, et al. Flow scheduling for conflict-free network updates in time-sensitive software-defined networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1668-1678. |
21 | VLK M, HANZÁLEK Z, BREJCHOVÁ K, et al. Enhancing schedulability and throughput of time-triggered traffic in IEEE 802.1Qbv time-sensitive networks[J]. IEEE Transactions on Communications, 2020, 68(11): 7023-7038. |
22 | VLK M, HANZÁLEK Z, TANG S Y. Constraint programming approaches to joint routing and scheduling in time-sensitive networks[J]. Computers & Industrial Engineering, 2021, 157: 107317. |
23 | GAVRILUŢ V, POP P. Traffic-type assignment for TSN-based mixed-criticality cyber-physical systems[J]. ACM Transactions on Cyber-Physical Systems, 2020, 4(2): 1-27. |
24 | PAHLEVAN M, OBERMAISSER R. Genetic algorithm for scheduling time-triggered traffic in time-sensitive networks[C]∥2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway: IEEE Press, 2018: 337-344. |
25 | WANG Y, CHEN J D, NING W, et al. A time-sensitive network scheduling algorithm based on improved ant colony optimization[J]. Alexandria Engineering Journal, 2021, 60(1): 107-114. |
26 | JIA H Y, JIANG Y, ZHONG C M, et al. TTDeep: time-triggered scheduling for real-time Ethernet via deep reinforcement learning[C]∥2021 IEEE Global Communications Conference (GLOBECOM). Piscataway: IEEE Press, 2022: 1-6. |
27 | ZHONG C M, JIA H Y, WAN H, et al. DRLS: a deep reinforcement learning based scheduler for time-triggered Ethernet[C]∥2021 International Conference on Computer Communications and Networks (ICCCN). Piscataway: IEEE Press, 2021: 1-11. |
28 | 李浩若, 何锋, 郑重, 等. 基于强化学习的时间触发通信调度方法[J]. 北京航空航天大学学报, 2019, 45(9): 1894-1901. |
LI H R, HE F, ZHENG Z, et al. Time-triggered communication scheduling method based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1894-1901 (in Chinese). | |
29 | ZHANG Y Z, XU Q M, XU L, et al. Efficient flow scheduling for industrial time-sensitive networking: a divisibility theory-based method[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 9312-9323. |
30 | YUAN Y Z, CAO X, LIU Z X, et al. Adaptive priority adjustment scheduling approach with response-time analysis in time-sensitive networks[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8714-8723. |
31 | ATALLAH A A, HAMAD G B, MOHAMED O A. Routing and scheduling of time-triggered traffic in time-sensitive networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4525-4534. |
32 | TU J Z, XU Q M, XU L, et al. SSL-SP: a semi-supervised-learning-based stream partitioning method for scale iterated scheduling in time-sensitive networks[C]∥2021 22nd IEEE International Conference on Industrial Technology (ICIT). Piscataway: IEEE Press, 2021: 1182-1187. |
33 | XU L, XU Q M, TU J Z, et al. Learning-based scalable scheduling and routing co-design with stream similarity partitioning for time-sensitive networking[J]. IEEE Internet of Things Journal, 2022, 9(15): 13353-13363. |
34 | FALK J, DÜRR F, ROTHERMEL K. Time-triggered traffic planning for data networks with conflict graphs[C]∥2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). Piscataway: IEEE Press, 2020: 124-136. |
35 | FALK J, GEPPERT H, DÜRR F, et al. Dynamic QoS-aware traffic planning for time-triggered flows in the real-time data plane[J]. IEEE Transactions on Network and Service Management, 2022, 19(2): 1807-1825. |
36 | FARZANEH M H, KUGELE S, KNOLL A. A graphical modeling tool supporting automated schedule synthesis for time-sensitive networking[C]∥2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway: IEEE Press, 2018: 1-8. |
37 | DOS SANTOS A C T, SCHNEIDER B, NIGAM V. TSNSCHED: automated schedule generation for time sensitive networking[C]∥2019 Formal Methods in Computer Aided Design (FMCAD). Piscataway: IEEE Press, 2019: 69-77. |
38 | STEINER W, CRACIUNAS S S, OLIVER R S. Traffic planning for time-sensitive communication[J]. IEEE Communications Standards Magazine, 2018, 2(2): 42-47. |
39 | SERNA OLIVER R, CRACIUNAS S S, STEINER W. IEEE 802.1Qbv gate control list synthesis using array theory encoding[C]∥2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). Piscataway: IEEE Press, 2018: 13-24. |
40 | REUSCH N, ZHAO L X, CRACIUNAS S S, et al. Window-based schedule synthesis for industrial IEEE 802.1Qbv TSN networks[C]∥2020 16th IEEE International Conference on Factory Communication Systems (WFCS). Piscataway: IEEE Press, 2020: 1-4. |
41 | VLK M, BREJCHOVÁ K, HANZÁLEK Z, et al. Large-scale periodic scheduling in time-sensitive networks[J]. Computers & Operations Research, 2022, 137: 105512. |
42 | DÜRR F, NAYAK N G. No-wait packet scheduling for IEEE time-sensitive networks (TSN)[C]∥Proceedings of the 24th International Conference on Real-Time Networks and Systems. New York: ACM, 2016: 203-212. |
43 | HEILMANN F, FOHLER G. Size-based queuing: an approach to improve bandwidth utilization in TSN networks[J]. ACM SIGBED Review, 2019, 16(1): 9-14. |
44 | ZHANG C W, WANG Y, YAO R Y, et al. Packet-size aware scheduling algorithms in guard band for time sensitive networking[J]. CCF Transactions on Networking, 2020, 3(1): 4-20. |
45 | POP P, RAAGAARD M L, CRACIUNAS S S, et al. Design optimisation of cyber-physical distributed systems using IEEE time-sensitive networks[J]. IET Cyber-Physical Systems: Theory & Applications, 2016, 1(1): 86-94. |
46 | RAAGAARD M L, POP P. Optimization algorithms for the scheduling of IEEE 802.1 time-sensitive networking (TSN): DTU Technical Report[R]. Kongens Lyngby: Technical University of Denmark, 2017. |
47 | SCHWEISSGUTH E, DANIELIS P, TIMMERMANN D, et al. ILP-based joint routing and scheduling for time-triggered networks[C]∥Proceedings of the 25th International Conference on Real-Time Networks and Systems. New York: ACM, 2017: 8-17. |
48 | SCHWEISSGUTH E, TIMMERMANN D, PARZYJEGLA H, et al. ILP-based routing and scheduling of multicast realtime traffic in time-sensitive networks[C]∥2020 IEEE 26th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). Piscataway: IEEE Press, 2020: 1-11. |
49 | GAVRILUŢ V, ZHAO L X, RAAGAARD M L, et al. AVB-aware routing and scheduling of time-triggered traffic for TSN[J]. IEEE Access, 2018, 6: 75229-75243. |
50 | ZHOU Y B, SAMII S, ELES P, et al. Time-triggered scheduling for time-sensitive networking with preemption[C]∥2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC). Piscataway: IEEE Press, 2022: 262-267. |
51 | 姜旭艳, 严锦立, 全巍, 等. SSA:一种面向CQF模型的TSN资源调度算法[J]. 东北大学学报(自然科学版), 2020, 41(6): 784-791. |
JIANG X Y, YAN J L, QUAN W, et al. SSA: CQF-oriented scheduling algorithm in time-sensitive networking[J]. Journal of Northeastern University (Natural Science), 2020, 41(6): 784-791 (in Chinese). | |
52 | YAN J L, QUAN W, JIANG X Y, et al. Injection time planning: making CQF practical in time-sensitive networking[C]∥IEEE INFOCOM 2020-IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2020: 616-625. |
53 | GUO M, GU C J, HE S B, et al. MSS: exploiting mapping score for CQF start time planning in time-sensitive networking[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 2140-2150. |
54 | LIU Y, CHENG Z R, REN J, et al. Joint routing and scheduling for CQF[C]∥2022 7th International Conference on Computer and Communication Systems (ICCCS). Piscataway: IEEE Press, 2022: 1-5. |
55 | ADNAN M, SCHARBARG J L, ERMONT J, et al. An improved timed automata approach for computing exact worst-case delays of AFDX sporadic flows[C]∥Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012). Piscataway: IEEE Press, 2013: 1-8. |
56 | LI X T, GEORGE L. Deterministic delay analysis of AVB switched Ethernet networks using an extended Trajectory Approach[J]. Real-Time Systems, 2017, 53(1): 121-186. |
57 | LE BOUDEC J Y, THIRAN P. Network calculus: a theory of deterministic queuing systems for the Internet[M]. Berlin: Springer, 2001. |
58 | BOUILLARD A, BOYER M, LE CORRONC E. Deterministic Network Calculus: From Theory to Practical Implementation[M]. Hoboken: John Wiley & Sons, Inc., 2018. |
59 | ZHAO L X, POP P, STEINHORST S. Quantitative performance comparison of various traffic shapers in time-sensitive networking[J]. IEEE Transactions on Network and Service Management, 2022, 19(3): 2899-2928. |
60 | ZHAO L X, POP P, CRACIUNAS S S. Worst-case latency analysis for IEEE 802.1Qbv time sensitive networks using network calculus[J]. IEEE Access, 2018, 6: 41803-41815. |
61 | HELLMANNS D, FALK J, GLAVACKIJ A, et al. On the performance of stream-based, class-based time-aware shaping and frame preemption in TSN[C]∥2020 IEEE International Conference on Industrial Technology (ICIT). Piscataway: IEEE Press, 2020: 298-303. |
62 | ZHAO L X, POP P, GONG Z J, et al. Improving latency analysis for flexible window-based GCL scheduling in TSN networks by integration of consecutive nodes offsets[J]. IEEE Internet of Things Journal, 2021, 8(7): 5574-5584. |
63 | SHALGHUM K M, NOORDIN N K, SALI A, et al. Critical offset optimizations for overlapping-based time-triggered windows in time-sensitive network[J]. IEEE Access, 2021, 9: 130484-130501. |
64 | BARZEGARAN M, REUSCH N, ZHAO L X, et al. Real-time traffic guarantees in heterogeneous time-sensitive networks[C]∥Proceedings of the 30th International Conference on Real-Time Networks and Systems. New York: ACM, 2022: 46-57. |
65 | CHOI B D, CHOI K B. A Markov modulated fluid queueing system with strict priority[J]. Telecommunication Systems, 1998, 9(1): 79-95. |
66 | SCHMITT J, HURLEY P, HOLLICK M, et al. Per-flow guarantees under class-based priority queueing[C]∥GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489). Piscataway: IEEE Press, 2004: 4169-4174. |
67 | GUAN N, GU Z H, DENG Q X, et al. Exact schedulability analysis for static-priority global multiprocessor scheduling using model-checking[C]∥IFIP International Workshop on Software Technolgies for Embedded and Ubiquitous Systems. Heidelberg: Springer, 2007: 263-272. |
68 | PARK J D, CHEOUN B M, JEON J W. Worst-case analysis of Ethernet AVB in automotive system[C]∥2015 IEEE International Conference on Information and Automation. Piscataway: IEEE Press, 2015: 1696-1699. |
69 | BORDOLOI U D, AMINIFAR A, ELES P, et al. Schedulability analysis of Ethernet AVB switches[C]∥2014 IEEE 20th International Conference on Embedded and Real-Time Computing Systems and Applications. Piscataway: IEEE Press, 2014: 1-10. |
70 | CAO J Y, CUIJPERS P J L, BRIL R J, et al. Independent WCRT analysis for individual priority classes in Ethernet AVB[J]. Real-Time Systems, 2018, 54(4): 861-911. |
71 | QUECK R. Analysis of Ethernet AVB for automotive networks using Network Calculus[C]∥2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012). Piscataway: IEEE Press, 2012: 61-67. |
72 | DE AZUA J A R, BOYER M. Complete modelling of AVB in network calculus framework[C]∥Proceedings of the 22nd International Conference on Real-Time Networks and Systems. New York: ACM, 2014: 55-64. |
73 | DIEMER J, THIELE D, ERNST R. Formal worst-case timing analysis of Ethernet topologies with strict-priority and AVB switching[C]∥7th IEEE International Symposium on Industrial Embedded Systems (SIES'12). Piscataway: IEEE Press, 2012: 1-10. |
74 | BENAMMAR N, BAUER H, RIDOUARD F, et al. Timing analysis of AVB Ethernet network using the Forward end-to-end Delay Analysis[C]∥Proceedings of the 26th International Conference on Real-Time Networks and Systems. New York: ACM, 2018: 223-233. |
75 | ZHAO L, HE F, LI E S, et al. Improving worst-case delay analysis for traffic of additional stream reservation class in ethernet-AVB network[J]. Sensors, 2018, 18(11): 3849. |
76 | SPECHT J, SAMII S. Urgency-based scheduler for time-sensitive switched Ethernet networks[C]∥2016 28th Euromicro Conference on Real-Time Systems (ECRTS). Piscataway: IEEE Press, 2016: 75-85. |
77 | LE BOUDEC J Y. A theory of traffic regulators for deterministic networks with application to interleaved regulators[J]. IEEE/ACM Transactions on Networking, 2018, 26(6): 2721-2733. |
78 | ZHOU Z F, LEE J, BERGER M S, et al. Simulating TSN traffic scheduling and shaping for future automotive Ethernet[J]. Journal of Communications and Networks, 2021, 23(1): 53-62. |
79 | IEEE. Multiple Cyclic Queuing and Forwarding [S/OL]. [2022-09-20]. . |
80 | THIELE D, ERNST R. Formal worst-case performance analysis of time-sensitive Ethernet with frame preemption[C]∥2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway: IEEE Press, 2016: 1-9. |
81 | ZHAO L X, POP P, ZHENG Z, et al. Timing analysis of AVB traffic in TSN networks using network calculus[C]∥2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). Piscataway: IEEE Press, 2018: 25-36. |
82 | BERISA A, ZHAO L X, CRACIUNAS S S, et al. AVB-aware routing and scheduling for critical traffic in time-sensitive networks with preemption[C]∥Proceedings of the 30th International Conference on Real-Time Networks and Systems. New York: ACM, 2022: 207-218. |
83 | BELLO L LO, ASHJAEI M, PATTI G, et al. Schedulability analysis of Time-Sensitive Networks with scheduled traffic and preemption support[J]. Journal of Parallel and Distributed Computing, 2020, 144: 153-171. |
84 | BELLO L L. Novel trends in automotive networks: a perspective on Ethernet and the IEEE Audio Video Bridging[C]∥Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA). Piscataway: IEEE Press, 2015: 1-8. |
85 | MOHAMMADPOUR E, STAI E, MOHIUDDIN M, et al. Latency and backlog bounds in time-sensitive networking with credit based shapers and asynchronous traffic shaping[C]∥2018 30th International Teletraffic Congress (ITC 30). Piscataway: IEEE Press, 2018: 1-6. |
86 | ZHAO L X, POP P, ZHENG Z, et al. Latency analysis of multiple classes of AVB traffic in TSN with standard credit behavior using network calculus[J]. IEEE Transactions on Industrial Electronics, 2021, 68(10): 10291-10302. |
87 | FANG B W, LI Q, GONG Z J, et al. Simulative assessments of credit-based shaping and asynchronous traffic shaping in time-sensitive networking[C]∥2020 12th International Conference on Advanced Infocomm Technology (ICAIT). Piscataway: IEEE Press, 2021: 111-118. |
88 | IEEE. TSN for Aerospace Onboard Ethernet Communications: IEEE P802.1DP [S/OL]. [2022-09-20]. . |
89 | HACKEL T, MEYER P, KORF F, et al. Software-defined networks supporting time-sensitive In-vehicular communication[C]∥2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). Piscataway: IEEE Press, 2019: 1-5. |
90 | 汪硕, 尹淑文, 卢华, 等 面向时间敏感网络的控制管理机制研究综述 [J]. 网络与信息安全学报, 2021, 7(6): 11-20. |
WANG S, YIN S W, LU H, et al. Survey of control and management mechanisms for time-sensitive network[J]. Chinese Journal of Network and Information Security, 2021, 7(6): 11-20 (in Chinese). | |
91 | BÖHM M, OHMS J, WERMSER D. Multi-domain time-sensitive networks-an east-westbound protocol for dynamic TSN-stream configuration across domains[C]∥2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway: IEEE Press, 2019: 1363-1366. |
92 | PAHLEVAN M, TABASSAM N, OBERMAISSER R. Heuristic list scheduler for time triggered traffic in time sensitive networks[J]. ACM SIGBED Review, 2019, 16(1): 15-20. |
93 | MAHFOUZI R, AMINIFAR A, SAMII S, et al. Security-aware routing and scheduling for control applications on Ethernet TSN networks[J]. ACM Transactions on Design Automation of Electronic Systems, 2019, 25(1): 1-26. |
94 | LI H X, LI D K, ZHANG X D, et al. A security management architecture for time synchronization towards high precision networks[J]. IEEE Access, 2021, 9: 117542-117553. |
95 | ERGENÇ D, BRÜLHART C, NEUMANN J, et al. On the security of IEEE 802.1 time-sensitive networking[C]∥2021 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway: IEEE Press, 2021: 1-6. |
[1] | Changxiao ZHAO, Jun DAI, Fangzheng DONG, Daojun LI. Link safety criticality balanced scheduling for airborne time-sensitive network [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 328870-328870. |
[2] | Guirong ZHOU, Jianyuan XU, Shaobo MA, Junyao ZONG, Jinqing SHEN, Haijie ZHU. Review of key technologies for avionics systems integration on large passenger aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529956-529956. |
[3] | Youlin FENG, Feng HE, Zheng LI, Xuan ZHOU, Sifan YU, Huagang XIONG. Performance evaluation of 5G wireless hybrid airborne network architecture for airliner [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 327681-327681. |
[4] | YU Sifan, HE Feng, XIONG Huagang. Priority-driven generalized real-time performance analysis of avionics network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 325578-325578. |
[5] | LUO Qing, ZHANG Tao, SHAN Peng, ZHANG Wentao, LIU Zihao. Generating reconfiguration blueprints for IMA systems based on improved Q-learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525792-525792. |
[6] | HE Feng, LI Ershuai, ZHOU Xuan, LI Haoruo, GONG Zijie. Design optimization and evaluation method for time-triggered communication scheduling in airborne networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 324258-324258. |
[7] | LV Na, PAN Wu, CHEN Kefan, ZHANG Yanhui. Data plane migration strategy of software-defined airborne network with controller failure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 324228-324228. |
[8] | LYU Na, CHEN Kun, CHEN Kefan, ZHU Haifeng, PAN Wu. Congestion-minimization network update strategy for topology changes [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 323661-323661. |
[9] | ZHAO Changxiao, HE Feng, LI Hao, WANG Peng. Dynamic reconfiguration method based on effectiveness for advanced fighter avionics system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523416-523416. |
[10] | LIU Yanfang, LYU Jianghua, MA Shilong, LI Tao. Decoupling method for test process and test devices in parallel testing of avionics systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(8): 322818-322818. |
[11] | XU Jian, WU Lei, CHU Jiangping, HE Ke. Performance analysis of information reconfiguration technology on civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522442-522442. |
[12] | LYU Na, LIU Chuang, CHEN Kefan, CAO Fangbo. A method for centralized control network deployment of aeronautic swarm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(7): 321961-321961. |
[13] | ZHUO Kun, ZHANG Hengyang, ZHENG Bo, HUANG Guoce, DING Yongfei, CHEN Tao. An adaptive backoff algorithm in MAC layer for airborne network based on priority differentiation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(4): 1281-1291. |
[14] | QU Yepin. Research on General Architecture of Avionics Mission System for Operational Support Aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(8): 2307-2318. |
[15] | WEI Jiali, JIA Yunfeng, XIE Shuguo, WU Zaohan. Complexity Assessment Method of Electromagnetic Environment for Avionic Systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(2): 487-496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341