Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (17): 328143-328143.doi: 10.7527/S1000-6893.2022.28143
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Yougang XIAO, Xiangna MAN, Guohua WU, Qizhang LUO()
Received:
2022-10-20
Revised:
2022-12-03
Accepted:
2023-01-18
Online:
2023-09-15
Published:
2023-02-13
Contact:
Qizhang LUO
E-mail:qz_luo@csu.edu.cn
Supported by:
CLC Number:
Yougang XIAO, Xiangna MAN, Guohua WU, Qizhang LUO. Surveying and mapping path planning method for UAV-borne SAR considering terains[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 328143-328143.
Table 1
Parameters of target areas
参数 | C1 | C2 | C3 | C4 |
---|---|---|---|---|
平均高程/m | 1 335.67 | 15.53 | 1 299.99 | 1 505.22 |
高程标准差/m | 272.50 | 1.19 | 198.35 | 264.60 |
最小高程/m | 772.44 | 11.12 | 851.52 | 966.74 |
最大高程/m | 2 133.59 | 19.34 | 1 885.99 | 2 242.42 |
角点1/(°) | E109.752 N31.895 | E116.418 N 37.781 | E109.618 N31.896 | E109.752 N31.835 |
角点2/(°) | E109.752 N31.847 | E116.418 N37.772 | E109.618 N31.846 | E109.752 N31.789 |
角点3/(°) | E109.815 N31.847 | E116.430 N37.772 | E109.679 N31.846 | E109.815 N31.789 |
角点4/(°) | E109.815 N31.895 | E116.430 N37.781 | E109.679 N31.896 | E109.815 N31.835 |
投影面积/(km)2 | 31.51 | 1.05 | 31.54 | 30.57 |
Table 3
Index results of three models in different test areas
模型 | 航线数量/条 | 覆盖率/% | |||||||
---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C1 | C2 | C3 | C4 | ||
CPPM | 11.4 | 11.6 | 13 | 10.6 | 95.42 | 95.09 | 95.56 | 92.51 | |
CPP1 | 17 | 13 | 23 | 17 | 94.81 | 90.58 | 96.72 | 94.64 | |
CPP2 | 8 | 11 | 9 | 7 | 52.00 | 90.99 | 39.74 | 43.90 | |
模型 | 几何形变率/% | 旁向重叠度/% | |||||||
C1 | C2 | C3 | C4 | C1 | C2 | C3 | C4 | ||
CPPM | 14.62 | 0.83 | 8.79 | 15.40 | 22.88 | 25.89 | 24.69 | 22.55 | |
CPP1 | 6.96 | 0.04 | 3.28 | 11.90 | 29.88 | 10.60 | 33.14 | 36.03 | |
CPP2 | 4.59 | 0.00 | 1.14 | 5.65 | 0 | 10.02 | 0.36 | 0 |
Table 4
Wilcoxon’s rank test results of the comparisons between CPPM and other methods
参数 | C1 | C2 | C3 | C4 | ||||
---|---|---|---|---|---|---|---|---|
CPP1 | CPP2 | CPP1 | CPP2 | CPP1 | CPP2 | CPP1 | CPP2 | |
航线数量 | 3.066 98×10-6 | 3.066 98×10-6 | 0.009 023 439 | 0.117 185 087 | 6.704 11×10-6 | 6.704 11×10-6 | 3.066 98×10-6 | 3.066 98×10-6 |
覆盖率 | 0.061 969 62 | 0.061 969 62 | 0.009 023 439 | 0.009 023 439 | 0.520 050 527 | 6.704 11×10-6 | 0.119 844 279 | 3.066 98×10-6 |
几何形变率 | 3.066 98×10-6 | 3.066 98×10-6 | 0.117 185 087 | 0.601 508 134 | 6.704 11×10-6 | 6.704 11×10-6 | 0.000 621 759 | 3.066 98×10-6 |
旁向重叠度 | 3.066 98×10-6 | 3.066 98×10-6 | 0.009 023 439 | 0.009 023 439 | 6.704 11×10-6 | 6.704 11×10-6 | 3.066 98×10-6 | 3.066 98×10-6 |
1 | LIU T G, XU P F, ZHANG S H. A review of recent advances in scanned topographic map processing[J]. Neurocomputing, 2019, 328: 75-87. |
2 | YANG Z Y, YU X Y, DEDMAN S, et al. UAV remote sensing applications in marine monitoring: knowledge visualization and review[J]. Science of the Total Environment, 2022, 838: 155939. |
3 | BHARDWAJ A, SAM L, MARTÍN-TORRES F J, et al. UAVs as remote sensing platform in glaciology: present applications and future prospects[J]. Remote Sensing of Environment, 2016, 175: 196-204. |
4 | LI B Y, HOU J M, LI D L, et al. Application of LiDAR UAV for high-resolution flood modelling[J]. Water Resources Management, 2021, 35(5): 1433-1447. |
5 | HASHEMI-BENI L, JONES J, THOMPSON G, et al. Challenges and opportunities for UAV-based digital elevation model generation for flood-risk management: a case of princeville, North Carolina[J]. Sensors, 2018, 18(11): 3843. |
6 | YU R, LYU M H, LU J H, et al. Spatial coordinates correction based on multi-sensor low-altitude remote sensing image registration for monitoring forest dynamics[J]. IEEE Access, 2020, 8: 18483-18496. |
7 | SUN L, WAN L T, WANG X P. Learning-based resource allocation strategy for industrial IoT in UAV-enabled MEC systems[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 5031-5040. |
8 | RASMUSSEN J, AZIM S, BOLDSEN S K, et al. The challenge of reproducing remote sensing data from satellites and unmanned aerial vehicles (UAVs) in the context of management zones and precision agriculture[J]. Precision Agriculture, 2021, 22(3): 834-851. |
9 | HUANG Y B, REDDY K N, FLETCHER R S, et al. UAV low-altitude remote sensing for precision weed management[J]. Weed Technology, 2018, 32(1): 2-6. |
10 | 王京卫. 测绘无人机低空数字航摄影像去雾霾研究[J]. 测绘学报, 2016, 45(2): 251. |
WANG J W. Study of the geo-UAV low-altitude digital aerial image haze removal[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2): 251 (in Chinese). | |
11 | SHU G F, CHANG J H, LU J, et al. A novel method for SAR ship detection based on eigensubspace projection[J]. Remote Sensing, 2022, 14(14): 3441. |
12 | FENG Y, CHEN J E, HUANG Z X, et al. A lightweight position-enhanced anchor-free algorithm for SAR ship detection[J]. Remote Sensing, 2022, 14(8): 1908. |
13 | TORRES M, PELTA D A, VERDEGAY J L, et al. Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction[J]. Expert Systems with Applications, 2016, 55: 441-451. |
14 | CABREIRA T M, BRISOLARA L B, FERREIRA P R Jr. Survey on coverage path planning with unmanned aerial vehicles[J]. Drones, 2019, 3(1): 4. |
15 | CHEN G Z, SHEN Y, ZHANG Y X, et al. 2D multi-area coverage path planning using L-SHADE in simulated ocean survey[J]. Applied Soft Computing, 2021, 112: 107754. |
16 | 薛镇涛, 陈建, 张自超, 等. 基于复杂地块凸划分优化的多无人机覆盖路径规划[J]. 航空学报, 2022, 43(12): 403-417. |
XUE Z T, CHEN J, ZHANG Z C, et al. Multi-UAV coverage path planning based on optimization of convex division of complex plots[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 403-417 (in Chinese). | |
17 | CABREIRA T M, DI FRANCO C, FERREIRA P R, et al. Energy-aware spiral coverage path planning for UAV photogrammetric applications[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3662-3668. |
18 | 夏阳升, 石建迈, 陈超, 等. 车机协同多区域覆盖侦察路径规划方法[J]. 指挥与控制学报, 2020, 6(4): 372-380. |
XIA Y S, SHI J M, CHEN C, et al. Path planning method for multi-area reconnaissance by cooperated ground vehicle and drone[J]. Journal of Command and Control, 2020, 6(4): 372-380 (in Chinese). | |
19 | MARICA V, CURIAC C D, QUENTEL P Y M, et al. Static coverage path planning for UAVs with conical field of view when monitoring rectangular ground areas[C]∥ 2019 23rd International Conference on System Theory, Control and Computing (ICSTCC). Piscataway: IEEE Press, 2019: 510-514. |
20 | CHO S W, PARK H J, LEE H, et al. Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations[J]. Computers & Industrial Engineering, 2021, 161: 107612. |
21 | YANG C H, TSAI M H, KANG S C, et al. UAV path planning method for digital terrain model reconstruction - A debris fan example[J]. Automation in Construction, 2018, 93: 214-230. |
22 | GUASTELLA D C, CANTELLI L, GIAMMELLO G, et al. Complete coverage path planning for aerial vehicle flocks deployed in outdoor environments[J]. Computers & Electrical Engineering, 2019, 75: 189-201. |
23 | CAO Y, CHENG X H, MU J Z. Concentrated coverage path planning algorithm of UAV formation for aerial photography[J]. IEEE Sensors Journal, 2022, 22(11): 11098-11111. |
24 | VASQUEZ GOMEZ J I, MELCHOR M M, HERRERA LOZADA J C. Optimal coverage path planning based on the rotating calipers algorithm[C]∥ 2017 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE). Piscataway: IEEE Press, 2017: 140-144. |
25 | MAYILVAGANAM K, SHRIVASTAVA A, RAJAGOPAL P. An optimal coverage path plan for an autonomous vehicle based on polygon decomposition and ant colony optimisation[J]. Ocean Engineering, 2022, 252: 111101. |
26 | MANSOURI S S, KANELLAKIS C, GEORGOULAS G, et al. 2D visual area coverage and path planning coupled with camera footprints[J]. Control Engineering Practice, 2018, 75: 1-16. |
27 | BEZAS K, TSOUMANIS G, ANGELIS C T, et al. Coverage path planning and point-of-interest detection using autonomous drone swarms[J]. Sensors, 2022, 22(19): 7551. |
28 | LUNA M A, ALE ISAAC M S, RAGAB A R, et al. Fast multi-UAV path planning for optimal area coverage in aerial sensing applications[J]. Sensors, 2022, 22(6): 2297. |
29 | DAI R, FOTEDAR S, RADMANESH M, et al. Quality-aware UAV coverage and path planning in geometrically complex environments[J]. Ad Hoc Networks, 2018, 73: 95-105. |
30 | 王炳乾, 陈超, 王华军, 等. 基于等高线构建无人机航线的新型仿地飞行策略[J]. 测绘通报, 2020(11): 104-107, 115. |
WANG B Q, CHEN C, WANG H J, et al. A new ground-like flight method based on contours to construct drone routes[J]. Bulletin of Surveying and Mapping, 2020(11): 104-107, 115 (in Chinese). | |
31 | WANG H P, ZHANG S Y, ZHANG X Y, et al. Near-optimal 3-D visual coverage for quadrotor unmanned aerial vehicles under photogrammetric constraints[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1694-1704. |
32 | DAI X H, QUAN Q, REN J R, et al. An analytical design-optimization method for electric propulsion systems of multicopter UAVs with desired hovering endurance[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(1): 228-239. |
33 | 陈玥, 李英成, 李兵, 等. 复杂地势下轻小型无人机LiDAR自主航线设计[J]. 测绘科学, 2021, 46(3): 104-109, 132. |
CHEN, Y, LI Y C, LI B, et al. Design of LiDAR autonomous route for light and small drones under complex terrain[J]. Science of Surveying and Mapping, 2021, 46(3): 104-109, 132 (in Chinese). | |
34 | VO A V, LAEFER D F, BYRNE J. Optimizing urban LiDAR flight path planning using a genetic algorithm and a dual parallel computing framework[J]. Remote Sensing, 2021, 13(21): 4437. |
35 | LIU N, LI X W, PENG X, et al. SAR tomography based on atomic norm minimization in urban areas[J]. Remote Sensing, 2022, 14(14): 3439. |
36 | 张同同, 杨红磊, 李东明, 等. SAR影像中叠掩与阴影区域的识别: 以湖北巴东为例[J]. 测绘通报, 2019(11): 85-88. |
ZHANG T T, YANG H L, LI D M, et al. Identification of layover and shadows regions in SAR images: —taking Badong as an example[J]. Bulletin of Surveying and Mapping, 2019(11): 85-88 (in Chinese). | |
37 | 赵争. 地形复杂区域InSAR高精度DEM提取方法[J]. 测绘学报, 2016, 45(11): 1385. |
ZHAO Z. Methods on high-accuracy DEM extraction from interferometric SAR in sophisticated terrain areas[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11): 1385 (in Chinese). | |
38 | KUMAR G N, AHMED M S, SARKAR A K, et al. Reentry trajectory optimization using gradient free algorithms[J]. IFAC-PapersOnLine, 2018, 51(1): 650-655. |
39 | FAHIMNIA B, DAVARZANI H, ESHRAGH A. Planning of complex supply chains: a performance comparison of three meta-heuristic algorithms[J]. Computers & Operations Research, 2018, 89: 241-252. |
40 | IQBAL A, AL-GHAMDI K A. Energy-efficient cellular manufacturing system: Eco-friendly revamping of machine shop configuration[J]. Energy, 2018, 163: 863-872. |
41 | 戴健, 许菲, 陈琪锋. 多无人机协同搜索区域划分与路径规划[J]. 航空学报, 2020, 41(): 723770. |
DAI J, XU F, CHEN Q F. Multi-UAV cooperative search on region division and path planning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(Sup 1): 723770 (in Chinese). | |
42 | SAADI A AIT, SOUKANE A, MERAIHI Y, et al. UAV path planning using optimization approaches: a survey[J]. Archives of Computational Methods in Engineering, 2022, 29(6): 4233-4284. |
[1] | Hongyu YIN, Yu WU, Tianjiao LIANG. Cooperative path planning for patrol coverage of fixed wing UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 328944-328944. |
[2] | Zhu WANG, Mengtong ZHANG, Zhenpeng ZHANG, Guangtong XU. Multi-UAV cooperative path planning based on multi-index dynamic priority [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328816-328816. |
[3] | Xuejian WANG, Yongming WEN, Xiaorong SHI, Ningning ZHANG, Jiexi LIU. Design of hybrid intelligent decision framework for multi⁃agent and multi⁃coupling tasks [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729770-729770. |
[4] | Lianbo YU, Pinzhao CAO, Liang SHI, Jie LIAN, Dong WANG. An improved conflict⁃based search algorithm for multi⁃agent path planning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727648-727648. |
[5] | Yong XU, Hongtao YAN, Tao JIA, Yue MA, Zehua DENG, Duoneng LIU. Aerial simulation docking technology of fixed-wing clustering UAVs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326539-326539. |
[6] | Bing WANG, Runyuan ZOU, Zhening CHANG. Aircraft takeoff mass estimation method based on improved simulated annealing algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 328090-328090. |
[7] | Quanyou YU, Zhizheng XU, Na DUAN, Mimi XU, Yi CHENG. Coverage operation path planning of UAV with endurance constraints based on improved ACO [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 327856-327856. |
[8] | Guohua WU, Tianyu WANG. Large-scale constellation TT&C resource scheduling algorithm based on adaptive simulated annealing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 327759-327759. |
[9] | Hua GUO, Xiaohe GUO. Local path planning algorithm for UAV based on improved velocity obstacle method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 327586-327586. |
[10] | XUE Zhentao, CHEN Jian, ZHANG Zichao, LIU Xuzan, MIAO Xiansheng, HU Gui. Multi-UAV coverage path planning based on optimization of convex division of complex plots [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 325990-325990. |
[11] | CAO Xianbin, YANG Peng. Prospects of channel modeling and dynamic deployment technologies of near space information network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527332-527332. |
[12] | ZHOU Bin, GUO Yan, LI Ning, ZHONG Xijian. Path planning of UAV using guided enhancement Q-learning algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 325109-325109. |
[13] | LUO Qing, ZHANG Tao, SHAN Peng, ZHANG Wentao, LIU Zihao. Generating reconfiguration blueprints for IMA systems based on improved Q-learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525792-525792. |
[14] | HU Xinting, WU Yu. Risk-based discrete multi-path planning method for UAVs in urban environments [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 324383-324383. |
[15] | PANG Lei, CAO Zhiqiang, YU Junzhi. A pedestrian-aware collision-free following approach for mobile robots based on A* and TEB [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524909-524909. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341