Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (17): 128126-128126.doi: 10.7527/S1000-6893.2022.28126
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Yue WANG1,2, Yunpeng WANG1,2(), Zonglin JIANG1,2
Received:
2022-10-18
Revised:
2022-10-25
Accepted:
2022-11-30
Online:
2023-09-15
Published:
2022-12-06
Contact:
Yunpeng WANG
E-mail:wangyunpeng@imech.ac.cn
Supported by:
CLC Number:
Yue WANG, Yunpeng WANG, Zonglin JIANG. Test technology of longitudinal stage separation for two-stage-to-orbit vehicle in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 128126-128126.
Table 3
Characteristics and complementary analysis of JF-12 duplicated flight condition shock tunnel and routine hypersonic wind tunnel for multi-body separation test
分类 | JF-12复现风洞 | 常规高超声速风洞 |
---|---|---|
特点 | 1. 大功率反向爆轰驱动技术激波风洞,复现高超声速飞行条件:飞行马赫数5~9,飞行高度25~50 km 2. 试验气流总温高 3. 激波风洞有效试验时间短(百毫秒量级) 4. 喷管出口直径2.5 m,试验段直径3.5 m,试验段尺寸大 5. 航天飞行器气动力/热、气动布局、级间分离特性、喷流控制,以及吸气式发动机特性试验研究 | 1. 分为连续式和间歇式两种,且以吹-吸式较为多见,试验来流马赫数5~10 2. 试验气流总温较低 3. 有效试验时间长(可达分钟量级) 4. 容易集成多项多体分离试验技术,比如网格测力、CTS 5. 航天飞行器气动力/热、气动布局、级间分离特性、喷流控制,以及吸气式发动机特性试验研究 |
优势 | 1. 在模拟参数相似性方面优于常规高超声速风洞,复现气流总温和总压,产生纯净试验气体,实现从“模拟”到“复现”飞行条件的跨越,更加有利于多体分离试验 2. 试验气流总温高,能够模拟更高马赫数范围的试验气流焓值,包含多体分离过程中复杂气动干扰中的高温真实气体效应 3. 大试验段尺度,有利于进行大尺寸/全尺寸飞行器部件(多体)分离试验 | 1. 有效试验时间长:可以在一次吹风试验车次中,进行网格测力试验获得飞行器多个相对位置下的气动力/热数据与流场图像;或者采用CTS系统获得多体分离过程中的实时轨迹、气动力解算信息 2. 采用CTS系统进行分离试验,可以对模型进行反复使用,无模型损坏成本问题,且不需要像投放分离试验要求动力相似 3. 在较长的有效试验时间范围内,完成操作比较复杂的自由飞多体动态分离试验较为容易,且适用于重模型进行投放/弹射分离试验 |
互补 | 1.JF-12复现风洞有效试验时间尽管长达130 ms,但是开展主动式多体动态分离试验难度很大,多体分离特征可以与在常规高超风洞开展的长试验时间的试验结果进行对比互补 2.JF-12复现风洞,冲击大,多种振动信号与气动信号耦合,惯性振动信号与试验时间同量级。尤其是在多体动态分离过程中,测得非定常气动力信号可以与在常规高超风洞中CTS测得的气动力进行对比,助力攻关激波风洞非定常气动力测量与处理技术难题 3.JF-12复现风洞试验气流总温高,可以揭示高超声速多体分离过程中的高温真实气体效应,试验结果与常规高超风洞试验结果对比,可以获得真实气体效应对多体分离气动载荷的具体影响,有利于揭示关键技术设计缺陷,提出改进依据和数据,规避飞行试验事故 4.常规高超风洞CTS多体分离试验本质上属于准定常静态试验,无法复现复杂气动干扰与多体运动耦合效应,并且试验存在模型支撑干扰影响。JF-12复现风洞动态分离试验与CTS分离试验对比,可以体现多体运动耦合效应的影响,并对模型支撑干扰影响进行校正 5.常规高超风洞有效试验时间长,可以进行轻/重模型的多体自由飞分离试验;而激波风洞有效试验时间短,在进行多体自由飞分离试验时,一般要求模型质量较轻,轻/重模型在两种风洞中的分离结果可以进行融合对比 |
1 | 佘文学, 刘晓鹏, 刘凯. 桑格尔空天飞行器技术途径分析与思考[J]. 火箭推进, 2021, 47(6): 11-20. |
SHE W X, LIU X P, LIU K. Analysis and thinking on technical approach of Sanger aerospace vehicle[J]. Journal of Rocket Propulsion, 2021, 47(6): 11-20 (in Chinese). | |
2 | DISSEL A F, KOTHARI A P, LEWIS M J. Investigation of two-stage-to-orbit airbreathing launch-vehicle configurations[J]. Journal of Spacecraft and Rockets, 2006, 43(3): 568-574. |
3 | WANG Y P, OZAWA H, KOYAMA H, et al. Abort separation of launch escape system using aerodynamic interference[J]. AIAA Journal, 2012, 51(1): 270-275. |
4 | XIANG G X, WANG C, TENG H H, et al. Shock/shock interactions between bodies and wings[J]. Chinese Journal of Aeronautics, 2018, 31(2): 255-261. |
5 | 王世芬, 王宇, 刘鹏. 高超音速后掠激波与边界层干扰流场特性[J]. 航空学报, 1993, 14(9): 449-454. |
WANG S F, WANG Y, LIU P. Surface feature in hypersonic swept shock and boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(9): 449-454 (in Chinese). | |
6 | 宋威, 艾邦成. 多体空气动力学研究进展[J]. 力学学报, 2022, 54(6): 1461-1484. |
SONG W, AI B C. Research progress on multibody aerodynamics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1461-1484 (in Chinese). | |
7 | 宋威, 艾邦成. 多体分离动力学研究进展[J]. 航空学报, 2022, 43(9): 025950. |
SONG W, AI B C. Multibody separation dynamics: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 025950 (in Chinese). | |
8 | 张鲁民, 柳森. 航天飞机系统两体分离问题的探讨[J]. 空气动力学学报, 1990, 8(2): 174-180. |
ZHANG L M, LIU S. Investigation of separation about the parallel space shuttle system[J]. Acta Aerodynamica Sinica, 1990, 8(2): 174-180 (in Chinese). | |
9 | 赵飞, 刘丽玲, 石泳, 等. 类X-43A飞行器高超声速分离仿真[J]. 航空学报, 2022, 43(5): 125171. |
ZHAO F, LIU L L, SHI Y, et al. Hypersonic separation simulation of aerocraft similar to X-43A[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 125171 (in Chinese). | |
10 | LIU Y A, QIAN Z S, LU W B, et al. Numerical investigation on the safe stage-separation mode for a TSTO vehicle[J]. Aerospace Science and Technology, 2020, 107: 106349. |
11 | 王粤, 汪运鹏, 薛晓鹏, 等. TSTO马赫7安全级间分离问题的数值研究[J]. 力学学报, 2022, 54(2): 526-542. |
WANG Y, WANG Y P, XUE X P, et al. Numerical investigation on safe stage separation problem of a tsto model at Mach 7[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 526-542 (in Chinese). | |
12 | PARK S H, KIM J, CHOI I, et al. Experimental study of separation behavior of two bodies in hypersonic flow[J]. Acta Astronautica, 2021, 181: 414-426. |
13 | TIAN S L, FU J W, CHEN J T. A numerical method for multi-body separation with collisions[J]. Aerospace Science and Technology, 2021, 109: 106426. |
14 | BORDELON W, FROST A, REED D. Stage separation wind tunnel tests of a generic TSTO launch vehicle[C]∥21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003. |
15 | OZAWA H, HANAI K, KITAMURA K, et al. Experimental investigation of shear-layer/body interactions in TSTO at hypersonic speeds[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
16 | MURPHY K, BUNING P, PAMADI B, et al. Overview of transonic to hypersonic stage separation tool development for multi-stage-to-orbit concepts[C]∥24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2004. |
17 | 吴继飞, 王元靖, 罗新福, 等. 高超声速风洞多体干扰与分离试验技术[J]. 实验流体力学, 2010, 24(3): 99-102. |
WU J F, WANG Y J, LUO X F, et al. A test technique for multi-boby interference and separation in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 99-102 (in Chinese). | |
18 | 解福田, 邹东阳, 钟俊, 等. 基于网格测力数据的多体分离轨迹预测方法研究[J]. 推进技术, 2022, 43(8): 154-164. |
XIE F T, ZOU D Y, ZHONG J, et al. Multi-body separation trajectory prediction based on grid force measurement data[J]. Journal of Propulsion Technology, 2022, 43(8): 154-164 (in Chinese). | |
19 | 林敬周. 我国首次形成高超声速风洞双分离轨迹捕获(CTS)试验能力[J]. 实验流体力学, 2021, 35(1): 126. |
LIN J Z. China’s first hypersonic wind tunnel dual CTS test capability formed in CARDC[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 126 (in Chinese). | |
20 | 沈清. TSTO级间分离气动问题与试验模型——大会特邀报告[C]∥第十二届全国实验流体力学学术会议. 北京: 中国力学学会, 2021. |
SHEN Q. Aerodynamic problems of stage separation and test model of TSTO——invited lecture [C]∥12th National Conference on Experiments in Fluid Mechanics. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2021 (in Chinese). | |
21 | 左光, 艾邦成. 先进空间运输系统气动设计综述[J]. 航空学报, 2021, 42(2): 624077. |
ZUO G, AI B C. Aerodynamic design of advanced space transportation system: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 624077 (in Chinese). | |
22 | 包为民, 汪小卫. 航班化航天运输系统发展展望[J]. 宇航总体技术, 2021, 5(3): 1-6. |
BAO W M, WANG X W. Prospect of airline-flight-mode aerospace transportation system[J]. Astronautical Systems Engineering Technology, 2021, 5(3): 1-6 (in Chinese). | |
23 | WANG Y, WANG Y P, JIANG Z L. Numerical investigation of aerodynamic separation schemes for two-stage-to-orbit-like two-body system[J]. Aerospace Science and Technology, 2022, 131: 107995. |
24 | 王粤, 汪运鹏, 王春, 等. 一种并联两级入轨飞行器纵向分离方案的数值研究[J]. 航空学报, 2023, 44(11): 127634. |
WANG Y, WANG Y P, WANG C, et al. Numerical study of the longitudinal stage separation for parallel-stage two-stage-to-orbit vehicle[J]. Acta Aeronauticaet Astronautica Sinica, 2023, 44(11): 127634 (in Chinese). | |
25 | WANG Y E, WANG Y P, WANG C, et al. Numerical investigation on longitudinal stage separation of spiked two-stage-to-orbit vehicle[J]. Journal of Spacecraft and Rockets, 2023, 60(1): 215-229. |
26 | GARCON F, TARAVEL P, RAFFIN J C. Recent developments in captive trajectory systems of the ONERA Modane wind tunnels[C]∥39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
27 | JIANG Z L. Experiments and development of long-test-duration hypervelocity detonation-driven shock tunnel (LHDst)[C]∥Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
28 | WANG Y P, HU Z M, LIU Y F, et al. Starting process in a large-scale shock tunnel[J]. AIAA Journal, 2016, 54(4): 1240-1249. |
29 | 李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010. |
LI Z F. Wind tunnel special test technology[M]. Beijing: Aviation Industry Press, 2010 (in Chinese). | |
30 | 李战华, 段俐, 谢季佳. 力学实验原理与技术[M]. 北京: 科学出版社, 2020. |
LI Z H, DUAN L, XIE J J. Principles and techniques in experiments of mechanics[M]. Beijing: Science Press, 2020 (in Chinese). | |
31 | EDNEY B E. Effects of shock impingement on the heat transfer around blunt bodies[J]. AIAA Journal, 1968, 6(1): 15-21. |
32 | OZAWA H, MORI K, NAKAMURA Y. Experimental analysis of TSTO aerodynamic interactions based on oil flow patterns at hypersonic speed[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
33 | MURPHY K, SCALLION W. Experimental stage separation tool development in NASA langley’s aerothermodynamics laboratory[C]∥AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2005. |
34 | 林敬周, 解福田, 钟俊, 等. 高超声速风洞双体同步分离捕获轨迹试验技术[J]. 空气动力学学报, 2023, 41(5): 77-86. |
LIN J Z, XIE F T, ZHONG J, et al. Dual-body synchronous captive trajectory test technique in hypersonic wind tunnel [J]. Acta Aerodynamic Sinica, 2022, 41(5): 77-86 (in Chinese). | |
35 | 魏毅寅, 张红文, 王长青. 可重复使用空间运输系统[M]. 北京:国防工业出版社, 2015: 77-161. |
WEI Y Y, ZHANG H W, WANG C Q. Reusable space transportation systems [M]. Beijing: National Defense Industry Press, 2015: 77-161 (in Chinese). |
[1] | Jiancheng ZHENG, Zhiguo QU, Xiansi TAN, Zhihuai LI, Gang ZHU, Lujun LI, Wei LIU. Resource management for hypersonic target detection by radar network based on responsibility area partitioning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329022-329022. |
[2] | Jinzhao DAI, Haixin CHEN. Optimization design method of three⁃dimensional wave cancellation biplane derived by shock⁃wave morphology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628942-628942. |
[3] | Xiaoyong LIU, Mingfu WANG, Jianwen LIU, Xin REN, Xuan ZHANG. Review and prospect of research on scramjet [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878-529878. |
[4] | Bo YANG, He YU, Zichen FAN. Micro-energy analysis method for time-varying error of aero-optical effects [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128703-128703. |
[5] | Xueliang LI, Chuangchuang LI, Wei SU, Jie WU. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627-128627. |
[6] | Jiang LAI, Zhaolin FAN, Qian WANG, Siwei DONG, Fulin TONG, Xianxu YUAN. Direct numerical simulation of hypersonic cone-flare model at angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128610-128610. |
[7] | Youde XIONG, Chuangchuang LI, Zhenhui ZHANG, Jie WU. Measurement of freestream disturbance in hypersonic wind tunnel with hot-wire anemometer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129042-129042. |
[8] | Weilin NI, Yonghai WANG, Cong XU, Fenghua CHI, Haizhao LIANG. Cooperative game guidance method for hypersonic vehicles based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729400-729400. |
[9] | Zhefeng YU, Shichang LIANG, Weibo SHI, Deyang TIAN, Anhua SHI, Dongjun LIAO, Ying YANG. Analysis and evaluation technology for optical radiation and radar scattering characteristics of HTV⁃2⁃like vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729465-729465. |
[10] | Ping MA, Ning ZHANG, Anhua SHI, Zhefeng YU, Shichang LIANG, Jie HUANG. Transmission characteristics of typical band microwave in experiment⁃simulated plasma [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729476-729476. |
[11] | Yuemeng MA, Ming LIU, Ding YANG, Ming YANG, Mingang ZHANG, Yajie GE. Prescribed performance and anti⁃noise control of near space vehicle with thermal constraint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729390-729390. |
[12] | Haoyu CHEN, Binwen WANG, Qiaozhi SONG, Xiaodong LI. Thermal flutter ground simulation test [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 227295-227295. |
[13] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[14] | Hongkang LIU, Jianqiang CHEN, Xinghao XIANG, Yatian ZHAO. Transition prediction for HIAD with different Reynolds numbers by improved k-ω-γtransition model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 126868-126868. |
[15] | Guotao YANG, Zhenjiang YUE, Li LIU. Rapid prediction of global hypersonic vehicle aerothermodynamics based on adaptive sampling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127391-127391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341