Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (14): 328003-328003.doi: 10.7527/S1000-6893.2022.28003
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Bo SHEN(), Wenliang WU, Gang YANG, Xingshe ZHOU
Received:
2022-09-14
Revised:
2022-09-28
Accepted:
2022-11-21
Online:
2023-07-25
Published:
2022-12-06
Contact:
Bo SHEN
E-mail:shen@nwpu.edu.cn
Supported by:
CLC Number:
Bo SHEN, Wenliang WU, Gang YANG, Xingshe ZHOU. Evaluation models and methods for intelligence of unmanned swarm systems based on collective OODA loop[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 328003-328003.
Table 1
Intelligence level classification of unmanned swarm system
等级 | 等级命名 | 群体观察 | 群体判断 | 群体决策 | 群体执行 |
---|---|---|---|---|---|
1 | 团队协调 | 感知内部基本的运行状态信息与外部静态目标等环境信息 | 内部基本运行状态信息与外部静态目标等环境信息预测 | 简单动作行为协调 | 内部避碰,故障隔离,完成简单指派任务 |
2 | 行为规划 | 感知外部动态目标等环境变化信息 | 外部动态目标等可变环境信息预测 | 简单动作 行为规划 | 外部动态目标规避,故障修复,完成简单指派任务 |
3 | 任务重构 | 识别外部动态目标等关键的场景元素 | 外部动态目标等关键的场景元素评价 | 简单突发 任务决策 | 追踪动态目标,完成简单突发任务 |
4 | 合作博弈 | 辨识外部动态目标等关键的场景元素 | 外部动态目标等关键的场景元素行为推理 | 复杂突发 任务决策 | 完成复杂突发任务 |
5 | 协同认知 | 认知外部动态目标等重要的场景元素 | 交互策略推理 | 长远目标 任务决策 | 完成长远目标任务 |
6 | 群体理智 | 认知与预测所有场景元素 | 交互战略判断 | 完全自主 战略意图制定 | 完成长远战略任务 |
Table 2
Capacity metric set of unmanned swarm system
群体能力 | 行为能力 | 复合能力 | 原子能力 | 评价参数 |
---|---|---|---|---|
群体聚合能力Cs | 群体观测能力Csob | 群体感知能力Csse | 个体感知能力集合{Cise} | 感知频率,感知距离,感知类型,感知精度 |
群体通信能力Cscm | 个体通信能力集合{Cicm} | 通信距离,传输速率 | ||
群体载荷能力Cslo | 个体载荷能力集合{Cilo} | 载荷最大重量,最长时间,载荷类型 | ||
群体判断能力Csor | 群体计算能力Cscp | 个体计算能力集合{Cicp} | 计算频率,总线频率 | |
群体分析能力Csan | 个体分析能力集合{Cian} | 分析准确率,分析实时性 | ||
群体决策能力Csde | 群体计算能力Cscp | 个体计算能力集合{Cicp} | 计算频率,总线频率 | |
群体通信能力Cscm | 个体通信能力集合{Cicm} | 通信距离,传输速率 | ||
群体规划能力Cspl | 个体规划能力集合{Cipl} | 分析准确率,分析实时性 | ||
群体执行能力Csac | 群体载荷能力Cslo | 个体载荷能力集合{Cilo} | 载荷最大重量、最长时间,载荷类型 | |
群体运动能力Csmo | 个体运动能力集合{Cimo} | 上行速度,下行速度,最大水平速度,横轴角,滚轴角 | ||
群体续航能力Csna | 个体续航能力集合{Cina} | 当前总能量,个体单位里程能耗 |
Table 3
Intelligence level instance of unmanned swarm for object searching
等级 | 等级命名 | 群体观察 | 群体判断 | 群体决策 | 群体执行 |
---|---|---|---|---|---|
1 | 团队协调 | 单载荷感知 固定感知模式 感知静态目标 | 判别已知简单环境下静态目标 | 预设搜索模式 固定搜索路径 | 按预设搜索模式执行固定搜索路径 |
2 | 行为规划 | 单载荷感知 固定感知模式 感知动态目标 | 判别已知简单环境下动态目标 | 预设搜索模式 规划搜索路径 | 按预设搜索模式执行规划搜索路径 |
3 | 任务重构 | 多载荷感知 可变感知模式 感知动态多目标 | 判别已知复杂环境下动态目标 | 多载荷切换 多模式切换 在线重规划搜索路径 | 根据环境变化,可选择最优感知载荷和最优感知模式,可按重规划路径搜索 |
4 | 合作博弈 | 多载荷感知 可变感知模式 感知动态多目标 感知外部威胁 | 判别已知复杂环境下动态目标,敌我识别、态势感知 | 多载荷切换 多模式切换 在线实时搜索路径规划 小规模战术规划 | 根据环境变化,可选择最优感知载荷和最优感知模式,可进行实时搜索路径规划、自主完成战术目标 |
5 | 协同认知 | 多载荷感知可变感知模式 感知外部环境 感知动态多目标 感知外部威胁 | 未知复杂环境认知与构建、识别未知环境下动态多目标,敌我识别、态势感知 | 多载荷切换 多模式切换在线实时搜索路径规划 自主选择目标 小规模战略规划 | 根据环境变化,可选择最优感知载荷和最优感知模式,可进行实时搜索路径规划、自主判定搜索目标,自主完成战术目标 |
6 | 群体理智 | 多载荷感知 可变感知模式 感知外部环境 感知动态多目标 感知外部威胁 | 未知复杂环境认知与构建、识别未知环境下动态多目标,敌我识别、态势感知 | 多载荷切换 多模式切换 在线实时搜索路径规划 自主选择目标 长远战略规划 | 根据环境变化,可选择最优感知载荷和模式,可进行实时搜索路径规划、自主判定搜索目标,自主完成长远战略目标 |
1 | BENI G, WANG J. Swarm intelligence in cellular robotic systems[M]∥In: DARIO P, SANDINI G, AEBISCHER P, editors. Robots and Biological Systems: Towards a New Bionics? Berlin: Springer, 1993: 703-712. |
2 | ZOMAYA A Y. Handbook of nature-inspired and innovative computing[M]. Berlin: Springer, 2006: 187-219. |
3 | PAN Y H. Heading toward artificial intelligence 2.0[J]. Engineering, 2016, 2(4): 409-413. |
4 | 郭斌, 於志文. 人机物融合群智计算[J]. 中国计算机学会通迅, 2021, 17:35-40. |
GUO B, YU Z. Crowd intelligence with the deep fusion of human, machine and IoT[J]. Communication of The Chinese Computer Society, 2021, 17:35-40 (in Chinese). | |
5 | 国务院. 新一代人工智能发展规划[EB/OL]. (2017-07-20) [2022-07-25]. . |
Department State. Development plan of new generation AI[EB/OL]. (2017-07-20). [2022-07-25]. . | |
6 | WU C, ZHANG T. Intelligent unmanned systems: Important achievements and applications of new generation artificial intelligence[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 649-651. |
7 | 樊邦奎, 张瑞雨. 无人机系统与人工智能[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1523-1529. |
FAN B K, ZHANG R Y. Unmanned aircraft system and artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1523-1529 (in Chinese). | |
8 | SCHRANZ M, DI CARO G A, SCHMICKL T, et al. Swarm Intelligence and cyber-physical systems: Concepts, challenges and future trends[J]. Swarm and Evolutionary Computation, 2021, 60(2): 100762. |
9 | DORIGO M, THERAULAZ G, TRIANNI V. Swarm robotics: Past, present, and future[J]. Proceedings of the IEEE, 2021, 109(7): 1152-1165. |
10 | CHEN J, SUN J, WANG G. From unmanned systems to autonomous intelligent systems[J]. Engineering, 2022, 12: 16-19. |
11 | CHUNG S J, PARANJAPE A A, DAMES P, et al. A survey on aerial swarm robotics[J]. IEEE Transactions on Robotics, 2018, 34(4): 837-855. |
12 | DORIGO M, THERAULAZ G, TRIANNI V. Reflections on the future of swarm robotics[J]. Science Robotics, 2020, 5(49): eabe4385. |
13 | HAMANN H. Swarm robotics: A formal approach[M]. Berlin: Springer, 2018:6-8. |
14 | 武文亮, 周兴社, 沈博, 等. 集群机器人系统特性评价研究综述[J]. 自动化学报, 2022, 48(5): 1153-1172. |
WU W L, ZHOU X S, SHEN B, et al. A review of swarm robotic systems property evaluation research[J]. Acta Automatica Sinica, 2022, 48(5): 1153-1172 (in Chinese). | |
15 | ZHANG K, YANG Z, BASAR T. Multi-agent reinforcement learning: A selective overview of theories and algorithms[M]. Hanadbook of Reinforcement Learning and Control. Berlin: Springer, 2021:321-384. |
16 | KAELBLING L P. The foundation of efficient robot learning[J]. Science, 2020, 369(6506): 915-916. |
17 | TURING A M I Computing machinery and intelligence[J]. Mind, 1950, LIX(236): 433-460. |
18 | LI L, ZHENG N N, WANG F Y. A theoretical foundation of intelligence testing and its application for intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6297-6306. |
19 | 国家自然科学基金委员会. 人工智能挑战性科学难题及颠覆性技术[EB/OL]. (2019-01-04) [2022-07-25]. . |
National Natural Science Foundation. Challenging scientific problems and disruptive technologies of AI [EB/OL]. (2019-01-04) [2022-07-25]. (in Chinese). | |
20 | 国家标准化管理委员会, 中央网信办, 国家发展改革委, 等. 国家新一代人工智能标准体系建设指南[EB/OL]. (2020-07-27) [2022-07-25]. . |
National Standardization Management Committee, Central Network Information Office, National Development and Reform Commission, et al. Construction guidelines of national new generation AI standard system[EB/OL]. (2020-07-27)[2022-07-25]. (in Chinese). | |
21 | DEFENSE O. Unmanned aircraft systems roadmap 2000-2025[R]. Washington DC: Department of Defense, 2000. |
22 | DEFENSE O. Unmanned aerial vehicles roadmap 2002-2027[R]. Washington DC: Department of Defense, 2002. |
23 | DEFENSE O. Unmanned aircraft system roadmap 2005-2030[R]. Washington DC: Department of Defense, 2005. |
24 | CLOUGH B. Metrics, schmetrics! How do You track a UAV’s autonomy?: AIAA-2002-3499[R]. Reston: AIAA,2002. |
25 | SHOLES E. Evolution of a UAV autonomy classification taxonomy[C]∥ 2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-16. |
26 | SHERIDAN T B. Automation, authority and angst—revisited[C]∥1991 Proceedings of the Human Factors Society Annual Meeting. San Francisco: Human Factors & Ergonomics Society Press, 1991: 2-6. |
27 | HUANG H M, PAVEK K, ALBUS J, et al. Autonomy levels for unmanned systems (ALFUS) framework: An update[C]∥ Defense and Security. San Francisco: SPIE, 2005: 439-448. |
28 | YOUNG L, YETTER J, GUYNN M. System analysis applied to autonomy: Application to high-altitude long-endurance remotely operated aircraft: AIAA-2005-7103[R]. Reston: AIAA, 2005. |
29 | 陈宗基, 魏金钟, 王英勋, 等. 无人机自主控制等级及其系统结构研究[J]. 航空学报, 2011, 32(6): 1075-1083. |
CHEN Z J, WEI J Z, WANG Y X, et al. UAV autonomous control levels and system structure[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1075-1083 (in Chinese). | |
30 | 王越超, 刘金国. 无人系统的自主性评价方法[J]. 科学通报, 2012, 57(15): 1290-1299. |
WANG Y C, LIU J G. Autonomy evaluation method of unmanned system[J]. Chinese Science Bulletin, 2012, 57(15): 1290-1299 (in Chinese). | |
31 | ZHANG T, LI Q, ZHANG C S, et al. Current trends in the development of intelligent unmanned autonomous systems[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 68-85. |
32 | 段海滨, 范彦铭, 魏晨, 等. 群体熵: 一种群体智能行为的量化分析工具[J]. 中国科学(信息科学), 2020, 50(3): 335-346. |
DUAN H B, FAN Y M, WEI C, et al. Swarm entropy: A quantitative analysis tool for swarm intelligence behaviors[J]. Scientia Sinica (Informationis), 2020, 50(3): 335-346 (in Chinese). | |
33 | CHAITIN G J. Algorithmic information theory[M]. Cambridge: Cambridge University Press, 2004:179-196. |
34 | CHAITIN G J. Gödel’s theorem and information[J]. International Journal of Theoretical Physics, 1982, 21(12): 941-954. |
35 | LEGG S, HUTTER M. Universal intelligence: A definition of machine intelligence[J]. Minds and Machines, 2007, 17(4): 391-444. |
36 | CHOLLET F. On the measure of intelligence[DB/OL]. arXiv preprint: 1911.01547, 2019. |
37 | 郑志明, 吕金虎, 韦卫, 等. 精准智能理论: 面向复杂动态对象的人工智能[J]. 中国科学: 信息科学, 2021, 51(4): 678-690. |
ZHENG Z M, LYU J H, WEI W, et al. Refined intelligence theory: Artificial intelligence regarding complex dynamic objects[J]. Scientia Sinica (Informationis), 2021, 51(4): 678-690 (in Chinese). | |
38 | 罗杰, 姜鑫, 郭炳晖, 等. 群体智能系统的动力学模型与群体熵度量[J]. 中国科学: 信息科学, 2022, 52(1): 99-110. |
LUO J, JIANG X, GUO B H, et al. Dynamic model and crowd entropy measurement of crowd intelligence system[J]. Scientia Sinica (Informationis), 2022, 52(1): 99-110 (in Chinese). | |
39 | IANTOVICS L B, EMMERT-STREIB F, ARIK S. MetrIntMeas a novel metric for measuring the intelligence of a swarm of cooperating agents[J]. Cognitive Systems Research, 2017, 45: 17-29. |
40 | WANG X H, ZHANG Y, WANG L Z, et al. Robustness evaluation method for unmanned aerial vehicle swarms based on complex network theory[J]. Chinese Journal of Aeronautics, 2020, 33(1): 352-364. |
41 | HECKER J P, MOSES M E. Beyond pheromones: Evolving error-tolerant, flexible, and scalable ant-inspired robot swarms[J]. Swarm Intelligence, 2015, 9(1): 43-70. |
42 | 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377. |
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). | |
43 | CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]∥ Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794. |
44 | ZHENG L M, YANG J C, CAI H, et al. MAgent: A many-agent reinforcement learning platform for artificial collective intelligence[DB/OL]. arXiv preprint: 1712.00600, 2017. |
[1] | Jun XIONG, Xiangpeng XIE, Zhi XIONG, Yuan ZHUANG, Yu ZHENG. Synchronized self⁃localization and relative⁃localization of unmanned swarms based on graph model [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729708-729708. |
[2] | Heye XIAO, Jianfeng YANG, Junqiang BAI, Xudong ZHANG, Lirong WU. Modular UAVs configuration method responded to task requirements [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 327100-327100. |
[3] | LIU Chuang, YU Xiaojun, ZHANG Ting, ZHU Haokun. Research status and trend of key technologies for simulation test of unmanned swarm equipment [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 726919-726919. |
[4] | XIANG Jinwu, DONG Xiwang, DING Wenrui, SUO Jinli, SHEN Lincheng, XIA Hui. Key technologies for autonomous cooperation of unmanned swarm systems in complex environments [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527570-527570. |
[5] | ZHANG Hongbo, ZHENG Lianyu, WANG Yiwei. Stability evaluation method for box-joint reconfigurable jig based on module service state [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 424180-424180. |
[6] | JIA Baohui, YU Lingjie, LIN Yueguo, LU Xiang. Comprehensive analysis model for determination of civil aircraft repair level based on AHP-SPA method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(11): 221130-221130. |
[7] | ZHANG Lixue, WANG Zhongwei. Environmental Adaptability Evaluation Model for Stratospheric Airships [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(4): 719-726. |
[8] | Li Shulin;Yang Sen;Sun Dong. Evaluation Model of Environmental Worthiness for Military Aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(6): 1053-1057. |
[9] | Xu Jia. Modeling and Evaluation of Effects of Fault Satellites Distribution on PDOP Availability of Navigation Constellation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 29(5): 1139-1143. |
[10] | GUO Peng. Comparison and Improvement of Risk Evaluation Methods for Entire Life Cycle (ELC) of Aeronautic Weapons [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2003, 24(5): 427-430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341