1 |
周岩. 新型等离子体合成射流及其激波控制特性研究[D]. 长沙: 国防科技大学, 2018.
|
|
ZHOU Y. Novel plasma synthetic jet and its application in shock wave control[D]. Changsha: National University of Defense Technology, 2018 (in Chinese).
|
2 |
WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62: 52-78.
|
3 |
TANG M X, WU Y, ZONG H H, et al. Experimental investigation of supersonic boundary-layer tripping with a spanwise pulsed spark discharge array[J]. Journal of Fluid Mechanics, 2022, 931: A16.
|
4 |
ZHOU Y, XIA Z X, LUO Z B, et al. A novel ram-air plasma synthetic jet actuator for near space high-speed flow control[J]. Acta Astronautica, 2017, 133: 95-102.
|
5 |
苑朝凯. 溢流冷却液膜厚度测量方法研究[D]. 北京: 中国科学院大学, 2017.
|
|
YUAN C K. Study on liquid film thickness measurement method for overflow cooling[D]. Beijing: University of Chinese Academy of Sciences, 2017 (in Chinese).
|
6 |
沈斌贤. 高速飞行器高温燃气逆向射流与发汗热防护的研究[D]. 长沙: 国防科技大学, 2019.
|
|
SHEN B X. Investigation of opposing jet and transpiration thermal protection with hot fuel gas on hypersonic vehicles[D]. Changsha: National University of Defense Technology, 2019 (in Chinese).
|
7 |
HANQUIST K M. Modeling of electron transpiration cooling for leading edges of hypersonic vehicles[D]. Ann Arbor: University of Michigan, 2017.
|
8 |
常雨. 高空反向喷流流场的数值模拟研究[D]. 长沙: 国防科学技术大学, 2004.
|
|
CHANG Y. Numerical simulation research for high altitude reverse jet flow[D]. Changsha: National University of Defense Technology, 2004 (in Chinese).
|
9 |
IM S, DO H, CAPPELLI M A. Dielectric barrier discharge control of a turbulent boundary layer in a supersonic flow[J]. Applied Physics Letters, 2010, 97(4): 041503.
|
10 |
YAN H, LIU F, XU J, et al. Study of oblique shock wave control by surface arc discharge plasma[J]. AIAA Journal, 2018, 56(2): 532-541.
|
11 |
KHODATAEV K V. Microwave discharges and possible applications in aerospace technologies[J]. Journal of Propulsion and Power, 2008, 24(5): 962-972.
|
12 |
洪延姬, 李倩, 方娟, 等. 激光等离子体减阻技术研究进展[J]. 航空学报, 2010, 31(1): 93-101.
|
|
HONG Y J, LI Q, FANG J, et al. Advances in study of laser plasma drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 93-101 (in Chinese).
|
13 |
MOREAU E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605-636.
|
14 |
周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027.
|
|
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese).
|
15 |
吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405.
|
|
WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese).
|
16 |
JIN D, LI Y H, JIA M, et al. Investigation on the shockwave induced by surface arc plasma in quiescent air[J]. Chinese Physics B, 2014, 23(3): 035201.
|
17 |
LI Y H, WANG J, WANG C, et al. Properties of surface arc discharge in a supersonic airflow[J]. Plasma Sources Science and Technology, 2010, 19(2): 025016.
|
18 |
SAMIMY M, ADAMOVICH I, WEBB B, et al. Development and characterization of plasma actuators for high-speed jet control[J]. Experiments in Fluids, 2004, 37(4): 577-588.
|