ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (6): 127215-127215.doi: 10.7527/S1000-6893.2022.27215
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Haoxiang WANG1,2, Yao XIAO1,2(), Kaikai ZHANG1,2, Guangli LI1,2, Siyuan CHANG1, Zhongwei TIAN3, Kai CUI1,2
Received:
2022-03-29
Revised:
2022-04-26
Accepted:
2022-05-16
Online:
2023-03-25
Published:
2022-05-19
Contact:
Yao XIAO
E-mail:xiaoyao@imech.ac.cn
Supported by:
CLC Number:
Haoxiang WANG, Yao XIAO, Kaikai ZHANG, Guangli LI, Siyuan CHANG, Zhongwei TIAN, Kai CUI. Effect of body trailing edge shape on subsonic flow characteristics of high-pressure capturing wing configuration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127215-127215.
1 | 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012. |
CAI G B, XU D J. Hypersonic vehicle technology[M]. Beijing: Science Press, 2012 (in Chinese). | |
2 | CAITLIN L. Lockheed Martin unveils SR-72[J]. IHS Jane’s Defence Weekly, 2013, 50(46): 6-6. |
3 | 廖孟豪, 李宪开, 窦相民. 美国高超声速作战飞机气动布局演化分析[J]. 航空科学技术, 2020, 31(11): 3-6. |
LIAO M H, LI X K, DOU X M. Evolution analysis of aerodynamic configuration of hypersonic military aircraft in USA[J]. Aeronautical Science & Technology, 2020, 31(11): 3-6 (in Chinese). | |
4 | LOBBIA M, SUZUKI K. Numerical investigation of waverider-derived hypersonic transport configurations[C]∥21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: 3804. |
5 | LOBBIA M, SUZUKI K. Multidisciplinary design optimization of hypersonic transport configurations using waveriders[C]∥19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston AIAA, 2014. |
6 | STEELANT J. Achievements obtained for sustained hypersonic flight within the LAPCAT project[C]∥15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
7 | STEELANT J. LAPCAT: An EC funded project on sustained hypersonic flight[C]∥57th International Astronautical Congress. Reston: AIAA, 2006. |
8 | CUI K, HU S C, LI G L, et al. Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets[J]. Science China Technological Sciences, 2013, 56(8): 1980-1988. |
9 | XIAO Y, CUI K, LI G Let al. Preliminary study of aerodynamic performance for waverider-based hypersonic vehicles with dorsal mounted engines[C]∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
10 | SZIROCZAK D, Smith H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. |
11 | 李宪开, 王霄, 柳军, 等. 水平起降高超声速飞机气动布局技术研究[J]. 航空科学技术, 2020, 31(11): 7-13. |
LI X K, WANG X, LIU J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J]. Aeronautical Science & Technology, 2020, 31(11): 7-13 (in Chinese). | |
12 | 王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学(E辑: 技术科学), 2009, 39(11): 1828-1835. |
WANG F M, DING H H, LEI M F. Aerodynamic characteristics and research of waverider aircraft in wide speed range[J]. Science in China (Series E: Technological Sciences), 2009, 39(11): 1828-1835 (in Chinese). | |
13 | LI S B, HUANG W, WANG Z G, et al. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range[J]. Science China Information Sciences, 2014, 57(12): 1-10. |
14 | LI S B. Influence of the connection section on the aerodynamic performance of the tandem waverider in a wide-speed range[J]. Aerospace Science and Technology, 2013, 30(1): 50-65. |
15 | LI S B. Design and investigation on variable Mach number waverider for a wide-speed range[J]. Aerospace Science and Technology, 2018, 76: 291-302. |
16 | LIU J. Novel osculating flowfield methodology for wide-speed range waverider vehicles across variable Mach number[J]. Acta Astronautica, 2019, 162: 160-167. |
17 | ZHANG T T. A design approach of wide-speed-range vehicles based on the cone-derived theory[J]. Aerospace Science and Technology, 2017, 71: 42-51. |
18 | ZHAO Z T. Variable Mach number design approach for a parallel waverider with a wide-speed range based on the osculating cone theory[J]. Acta Astronautica, 2018, 147: 163-174. |
19 | RODI P. Vortex lift waverider configurations[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
20 | RODI P. The osculating flowfield method of waverider geometry generation[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
21 | LIU C Z, BAI P, CHEN Y X, et al. Research on the design of double swept waverider[C]∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
22 | 崔凯, 李广利, 胡守超, 等. 高速飞行器高压捕获翼气动布局概念研究[J]. 中国科学: 物理学 力学 天文学, 2013, 43(5): 652-661. |
CUI K, LI G L, HU S C, et al. Conceptual studies of the high pressure zone capture wing configuration for high speed air vehicles[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(5): 652-661 (in Chinese). | |
23 | CUI K, LI G L, XIAO Y. Aerodynamic performance study of high pressure zone capture wing configurations[C]∥33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015. |
24 | CUI K, LI G L, XIAO Y, et al. High-pressure capturing wing configurations[J]. AIAA Journal, 2017, 55(6): 1909-1919. |
25 | 李广利, 崔凯, 肖尧, 等. 高压捕获翼前缘型线优化和分析[J]. 力学学报, 2016, 48(4): 877-885. |
LI G L, CUI K, XIAO Y, et al. Leading edge optimization and parameter analysis of high pressure capturing wings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 877-885 (in Chinese). | |
26 | 李广利, 崔凯, 肖尧, 等. 高压捕获翼位置设计方法研究[J]. 力学学报, 2016, 48(3): 576-584. |
LI G L, CUI K, XIAO Y, et al. The design method research for the position of high pressure capturing wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 576-584 (in Chinese). | |
27 | LI G L, CUI K, XIAO Y, et al. Effects of shock impingement on aerothermal and aerodynamic performance for high-pressure capturing wings[C]∥ 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
28 | CUI K, XIAO Y, XU Y Z, et al. Hypersonic I-shaped aerodynamic configurations[J]. Science China Physics, Mechanics & Astronomy, 2018, 61(2): 024722. |
29 | LI G L, CUI K, XU Y Z, et al. Experimental investigation of a hypersonic I-shaped configuration with a waverider compression surface[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(5): 254721. |
30 | 常思源, 肖尧, 李广利, 等. 翼反角对高压捕获翼构型亚声速气动特性影响分析研究[J]. 力学学报, 2022, 54(10): 2760-2772. |
CHANG S Y, XIAO Y, LI G L, et al. Effect of wing dihedral and anhedral angles on subsonic aerodynamic characteristics of hcw configuration[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2760-2772 (in Chinese). | |
31 | 王浩祥, 李广利, 徐应洲, 等. 高压捕获翼构型跨声速流动特性初步研究[J]. 空气动力学学报, 2020, 38(3): 441-447. |
WANG H X, LI G L, XU Y Z, et al. Preliminary study on transonic flow characteristics of a high-pressure capturing wing configuration[J]. Acta Aerodynamica Sinica, 2020, 38(3): 441-447 (in Chinese). | |
32 | 王浩祥, 李广利, 杨靖, 等. 高压捕获翼构型亚跨超流动特性数值研究[J]. 力学学报, 2021, 53(11): 3056-3070. |
WANG H X, LI G L, YANG J, et al. Numerical study on flow characteristics of high-pressure capturing wing configuration at subsonic, transonic and supersonic regime[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3056-3070 (in Chinese). | |
33 | 李素循. 典型外形高超声速流动特性[M]. 北京: 国防工业出版社, 2007. |
LI S X. Typical hypersonic flow characteristics[M]. Beijing: National Defense Industry Press, 2007 (in Chinese). |
[1] | Xuehe WANG, Chunshuo CHAI, Shilong XING, Feng FAN, Shuilin HUANG. Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529960-529960. |
[2] | Guoqiang LI, Kuihui SONG, Chen QIN, Guangyin ZHAO, Linxin WU, Yongdong YANG. Test on active control of airfoil dynamic stall based on trailing edge flap [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 128699-128699. |
[3] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[4] | Chunpeng LI, Zhansen QIAN, Xiasheng SUN. Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 127335-127335. |
[5] | Weijia LIU, Yingkun LI, Xiong CHEN, Chunlei LI. Panel flutter characteristics on shock wave/boundary layer interaction based on fluid⁃structure coupling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127085-127085. |
[6] | Fangjian WANG, Ke XIE, Jin LIU, Yuhui SONG, Han QIN, Lan CHEN. Unsteady flow and wing rock characteristics of low aspect ratio flying-wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126449-126449. |
[7] | Shijun SUN, Xiaolong LI, Yanming LIU, Jianhua WANG, Songtao WANG. Influence of wide-speed-range inflow on aerodynamic performance of supersonic through-flow fan cascade [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528523-528523. |
[8] | Shanshan TIAN, Liang JIN, Zhaobo DU, Xiangyu ZHONG, Wei HUANG, Yuanyang LIU. Research progress of shock wave/boundary layer interaction controls induced by bump [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 28411-028411. |
[9] | Xiaodong LIU, Pengxin LIU, Chen LI, Dong SUN, Xianxu YUAN. Direct numerical simulation of high enthalpy shock wave/turbulent boundary layer interaction [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 127832-127832. |
[10] | Shouchao HU, Yu ZHUANG, Xian LI, Tao JIANG. Hypersonic aero-heating environment research model HyHERM-I: Experiment [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 233-248. |
[11] | Yating FENG, Hui ZHANG. Aerodynamic drag reduction device based on rear wind energy harvesting [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 180-191. |
[12] | CHENG Jianrui, SHI Chongguang, QU Lixia, XU Yue, YOU Yancheng, ZHU Chengxiang. Theoretical model of 2D curved shock wave/turbulent boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125993-125993. |
[13] | ZHANG Sheng, YANG Yu, WANG Zhigang, SHI Xintong. Design and validation of eccentric beam for variable camber trailing edge [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 525892-525892. |
[14] | ZHANG Zhenkai, JIA Sijia, SONG Chen, YANG Chao. Optimum design of wind tunnel test model for compliant morphing trailing edge [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 226071-226071. |
[15] | ZHOU Yan, LUO Zhenbing, WANG Lin, XIA Zhixun, GAO Tianxiang, XIE Wei, DENG Xiong, PENG Wenqiang, CHENG Pan. Plasma synthetic jet actuator for flow control: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 25027-025027. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341