ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (6): 127171-127171.doi: 10.7527/S1000-6893.2022.27171
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Zipei ZHANG1,2, Zhong ZHAO1,2(), Jianqiang CHEN1,2, Jian LIU1,2, Xiaobing DENG1,2
Received:
2022-03-18
Revised:
2022-05-02
Accepted:
2022-05-25
Online:
2023-03-25
Published:
2022-06-17
Contact:
Zhong ZHAO
E-mail:bell_cardc@163.com
Supported by:
CLC Number:
Zipei ZHANG, Zhong ZHAO, Jianqiang CHEN, Jian LIU, Xiaobing DENG. Development and verification of LES model in NNW-PHengLEI[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127171-127171.
Table 1
Numerical methods, computational domain, grid and subgrid models used in this paper and references
算例序号 | 数值方法 | Lx | Ly | Lz | Nx | Ny | Nz | Δx+ | Δy+ | Δz+ | 亚格子模型 |
---|---|---|---|---|---|---|---|---|---|---|---|
A | Fourier谱/高阶有限差分方法 | 2πh | 2h | πh | 256 | 192 | 192 | 10 | 0.2~12.0 | 6.7 | 无 |
B | Fourier谱/高阶有限差分方法 | 2πh | 2h | πh | 128 | 192 | 96 | 20 | 0.2~12.0 | 13.0 | SM |
C | Fourier谱/高阶有限差分方法 | 2πh | 2h | πh | 128 | 192 | 96 | 20 | 0.2~12.0 | 13.0 | DSM |
D | Fourier谱/高阶有限差分方法 | 2πh | 2h | πh | 128 | 192 | 96 | 20 | 0.2~12.0 | 13.0 | Sigma |
DNS[ | Fourier谱/ Chebyshev多项式 | 2πh | 2h | πh | 256 | 192 | 192 | 10 | 0.2~12.0 | 6.7 | 无 |
DSM[ | 4th order Galerkin finite element | 3.5h | 2h | 1.3h | 30 | 138 | 50 | 30 | 1.0~17.0 | 10.0 | DSM |
Sigma[ | 4th order Galerkin finite element | 3.5h | 2h | 1.3h | 30 | 138 | 50 | 30 | 1.0~17.0 | 10.0 | Sigma |
1 | SAGAUT P. Large eddy simulation for incompressible flows: An introduction[M]. 3rd ed. Berlin: Springer-Verlag, 2006 |
2 | ROGALLO R S, MOIN P. Numerical simulation of turbulent flows[J]. Annual Review of Fluid Mechanics, 1984, 16: 99-137. |
3 | CHOI H, MOIN P. Grid-point requirements for large eddy simulation: Chapman’s estimates revisited[J]. Physics of Fluids, 2012, 24(1): 011702. |
4 | SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences: NASA/CR-2014-218178[R]. Washington D.C.: NASA, 2014. |
5 | TUCKER P G. The LES model’s role in jet noise[J]. Progress in Aerospace Sciences, 2008, 44(6): 427-436. |
6 | PITSCH H. Large-eddy simulation of turbulent combustion[J]. Annual Review of Fluid Mechanics, 2006, 38: 453-482. |
7 | EDWARDS J R. Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques: A survey of recent results[J]. Progress in Aerospace Sciences, 2008, 44(6): 447-465. |
8 | ALMUTAIRI J H, ALQADI I M. Large-eddy simulation of natural low-frequency oscillations of separating-reattaching flow near stall conditions[J]. AIAA Journal, 2013, 51(4): 981-991. |
9 | GEORGIADIS N J, RIZZETTA D P, FUREBY C. Large-eddy simulation: Current capabilities, recommended practices, and future research[J]. AIAA Journal, 2010, 48(8): 1772-1784. |
10 | CHOI H, MOIN P. Effects of the computational time step on numerical solutions of turbulent flow[J]. Journal of Computational Physics, 1994, 113(1): 1-4. |
11 | NICOUD F, TODA H B, CABRIT O, et al. Using singular values to build a subgrid-scale model for large eddy simulations[J]. Physics of Fluids, 2011, 23(8): 085106. |
12 | PIOMELLI U. Wall-layer models for large-eddy simulations[J]. Progress in Aerospace Sciences, 2008, 44(6): 437-446. |
13 | SCHUMANN U. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]. Journal of Computational Physics, 1975, 18(4): 376-404. |
14 | BALARAS E, BENOCCI C, PIOMELLI U. Two-layer approximate boundary conditions for large-eddy simulations[J]. AIAA Journal, 1996, 34(6): 1111-1119. |
15 | SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 181-202. |
16 | LUND T S, WU X H, SQUIRES K D. Generation of turbulent inflow data for spatially-developing boundary layer simulations[J]. Journal of Computational Physics, 1998, 140(2): 233-258. |
17 | SAGAUT P, GARNIER E, TROMEUR E, et al. Turbulent inflow conditions for large-eddy-simulation of compressible wall-bounded flows[J]. AIAA Journal, 2004, 42(3): 469-477. |
18 | JARRIN N, BENHAMADOUCHE S, LAURENCE D J, et al. A synthetic-eddy-method for generating inflow conditions for large-eddy simulations[J]. International Journal of Heat and Fluid Flow, 2006, 27(4): 585-593. |
19 | FORSYTHE J, WENTZEL J F, SQUIRES K, et al. Computation of prescribed spin for a rectangular wing and for the F-15E using detached-eddy simulation[C]∥41st Aerospace Sciences Meeting and Exhibit 2003. Reston: AIAA, 2003: 839. |
20 | WANG Z J. High-order methods for the Euler and Navier-Stokes equations on unstructured grids[J]. Progress in Aerospace Sciences, 2007, 43(1-3): 1-41. |
21 | 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报, 2019, 42(11): 2368-2383. |
ZHAO Z, ZHANG L P, HE L, et al. PHengLEI: A large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11): 2368-2383 (in Chinese). | |
22 | 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020(2): 210-219. |
ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020(2): 210-219 (in Chinese). | |
23 | 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学, 2021, 51: 1326-1347. |
Chen J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Science China: Technological Sciences, 2021, 51: 1326-1347 (in Chinese). | |
24 | CHORIN A J. Numerical solution of the Navier-Stokes equations[J]. Mathematics of Computation, 1968, 22(104): 745-762. |
25 | CHORIN A J. On the convergence of discrete approximations to the Navier-Stokes equations[J]. Mathematics of Computation, 1969, 23(106): 341-353. |
26 | 刘淼儿. 数值求解不可压缩流动的投影方法[D]. 北京: 清华大学, 2004: 26-29. |
LIU M E. Projection methods for numerically solving incompressible flow[D]. Beijing: Tsinghua University, 2004: 26-29 (in Chinese). | |
27 | KIM J, MOIN P. Application of a fractional-step method to incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 1985, 59(2): 308-323. |
28 | CANUTO C, QUARTERONI A, HUSSAINI M Y, et al. Spectral methods: Evolution to complex geometries and applications to fluid dynamics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. |
29 | GAMET L, DUCROS F, NICOUD F, et al. Compact finite difference schemes on non-uniform meshes. Application to direct numerical simulations of compressible flows[J]. International Journal for Numerical Methods in Fluids, 1999, 29(2): 159-191. |
30 | CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods: Fundamentals in single domains[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. |
31 | MARTÍN M P, PIOMELLI U, CANDLER G V. Subgrid-scale models for compressible large-eddy simulations[J]. Theoretical and Computational Fluid Dynamics, 2000, 13(5): 361-376. |
32 | 陈坚强, 马燕凯, 闵耀兵, 等. 国家数值风洞(NNW)通用软件同构混合求解器设计[J]. 空气动力学学报, 2020, 38(6): 1103-1110, 1102. |
CHEN J Q, MA Y K, MIN Y B, et al. Design and development of homogeneous hybrid solvers on National Numerical Windtunnel(NNW)PHengLEI[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1103-1110, 1102 (in Chinese). | |
33 | DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44. |
34 | 李鹏, 陈坚强, 丁明松, 等. NNW-HyFLOW高超声速流动模拟软件框架设计[J]. 航空学报, 2021, 42(9): 625718. |
LI P, CHEN J Q, DING M S, et al. Framework design of NNW-HyFLOW hypersonic flow simulation software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625718 (in Chinese). | |
35 | SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99-164. |
36 | YOSHIZAWA A. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling[J]. The Physics of Fluids, 1986, 29(7): 2152-2164. |
37 | LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(3): 633-635. |
38 | 邓小兵. 不可压缩湍流大涡模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2008: 21-22. |
DENG X B. Large eddy simulation of incompressible turbulent flow[D]. Mianyang: China Aerodynamics Research and Development Center, 2008: 21-22 (in Chinese). | |
39 | LU X Y, WANG S W, SUNG H G, et al. Large-eddy simulations of turbulent swirling flows injected into a dump chamber[J]. Journal of Fluid Mechanics, 2005, 527: 171-195. |
40 | PEKUROVSKY D. P3DFFT: A framework for parallel computations of Fourier transforms in three dimensions[J]. SIAM Journal on Scientific Computing, 2012, 34(4): C192-C209. |
41 | 孟丽媛, 徐刚, 万云博, 等. 风雷软件应用与开发指南(2112.v9198)[M]. 绵阳: 中国空气动力研究与发展中心, 2021. |
MENG L Y, XU G, WAN Y B, et al. PHengLEI(2112.v9198) user’s manual[M]. Mianyang: China Aerodynamics Research and Development Center, 2021 (in Chinese). | |
42 | KIM J, MOIN P, MOSER R. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. Journal of Fluid Mechanics, 1987, 177: 133-166. |
43 | MOSER R D, KIM J, MANSOUR N N. Direct numerical simulation of turbulent channel flow up to Reτ =590[J]. Physics of Fluids, 1999, 11(4): 943-945. |
44 | ONG L, WALLACE J. The velocity field of the turbulent very near wake of a circular cylinder[J].Experiments in Fluids, 1996, 20(6): 441-453. |
45 | LOURENCO L M, SHIH C. Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study: TF-62[R]. Stanford, California: NASA Ames/Stanford University, 1994. |
46 | PARNAUDEAU P, CARLIER J, HEITZ D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J]. Physics of Fluids, 2008, 20(8): 085101. |
47 | WISSINK J G, RODI W. Numerical study of the near wake of a circular cylinder[J]. International Journal of Heat and Fluid Flow, 2008, 29(4): 1060-1070. |
48 | LYSENKO D A, ERTESVÅG I S, RIAN K E. Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox[J]. Flow, Turbulence and Combustion, 2012, 89(4): 491-518. |
49 | MA X, KARAMANOS G S, KARNIADAKIS G E. Dynamics and low-dimensionality of a turbulent near wake[J]. Journal of Fluid Mechanics, 2000, 410: 29-65. |
50 | ZAMAN K B M Q, MCKINZIE D J, RUMSEY C L. A natural low-frequency oscillation of the flow over an airfoil near stalling conditions[J]. Journal of Fluid Mechanics, 1989, 202: 403-442. |
51 | ELJACK E M, SORIA J. Investigation of the low-frequency oscillations in the flowfield about an airfoil[J]. AIAA Journal, 2020, 58(10): 4271-4286. |
52 | LIU J, et al. Numerical investigation of unsteady vortex breakdown past 80°/65° double-delta wing[J]. Chinese Journal of Aeronautics, 2014, 27(3): 521-530. |
[1] | Chunhui ZHAO, Anmeng LIU, Yang LYU, Quan PAN. A survey of resilient self-localization for UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28839-028839. |
[2] | Yuedong ZHUO, Qiao LI, Guangshan LU, Junjie WU. Simulation of MIMO channel for wireless avionics intra-communications [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 328969-328969. |
[3] | Qingrui ZHANG, Yunyun LIU, Huijie SUN, Bo ZHU. Robust cooperative tracking control for close formation of fixed⁃wing unmanned aerial vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 629233-629233. |
[4] | Fengxia LU, Kun WEI, Chunlei WANG, Heyun BAO, Rupeng ZHU. Accessibility of metal particles in three-phase flow of helicopter intermediate gearbox [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 128524-128524. |
[5] | Yuemeng MA, Ming LIU, Ding YANG, Ming YANG, Mingang ZHANG, Yajie GE. Prescribed performance and anti⁃noise control of near space vehicle with thermal constraint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729390-729390. |
[6] | Weilin NI, Yonghai WANG, Cong XU, Fenghua CHI, Haizhao LIANG. Cooperative game guidance method for hypersonic vehicles based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729400-729400. |
[7] | Yalu FU, Xianxu YUAN, Pengxin LIU, Ming YU. Statistical properties of thermodynamic fluctuations in compressible wall⁃bounded turbulence [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 127217-127217. |
[8] | Kaiming ZHANG, Kelu WANG, Shiqiang LU, Mutong LIU, Ping ZHONG, Ye TIAN. Thermal deformation behavior of S280 ultra-high strength stainless steel based on response surface methodology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 427293-427293. |
[9] | Zhiqiang ZHANG, Ziming YU, Tiangang ZHANG, Qian YANG, Hao WANG. Microstructure of TiC x reinforced Ti-based composite coating prepared by laser cladding and first principle study on reinforced phase [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 427294-427294. |
[10] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[11] | An ZHANG, Mi YANG, Wenhao BI, Baichuan ZHANG, Yunong WANG. Task allocation of heterogeneous multi-UAVs in uncertain environment based on multi-strategy integrated GWO [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 327115-327115. |
[12] | Xizhen GAO, Liang TANG, Huang HUANG. Deep reinforcement learning in autonomous manipulation for celestial bodies exploration: Applications and challenges [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 26762-026762. |
[13] | Junhong LI, Xuhong JIN, Chunfeng LIU, Wenbo MIAO, Xiaoli CHENG. Microaerodynamic experiment and computation of near space high speed vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127072-127072. |
[14] | Yushu JIN, Xu XU, Qingchun YANG. Research progress in combustion characteristics and engine applications of energetic hydrocarbon fuels [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 26690-026690. |
[15] | Ziyi WANG, Weiwei ZHANG, Lei LIU, Xiaofeng YANG. Reduced order aerothermoelastic framework suitable for complex flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126807-126807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341