[1] IATA. Aircraft technology roadmap to 2050[EB/OL]. (2019.12.11)[2021.4.1]. https://www.iata.org/contentassets/8d19e716636a47c184e7221c77563c93/Technology-roadmap-2050.pdf. [2] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644. [3] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese). [4] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). [5] SMITH A M O, GAMBERONI N. Transition, pressure gradient and stability theory[M]. Long Beach:Douglas, 1956. [6] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y, et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese). [7] 魏闯, 张铁军, 钱战森. 基于eN转捩预测方法的增升装置失速特性数值模拟研究[J]. 航空科学技术, 2019, 30(9):33-39. WEI C, ZHANG T J, QIAN Z S. Number simulation on stall characteristic for high-lift configuration based on eN transition method[J]. Aeronautical Science & Technology, 2019, 30(9):33-39(in Chinese). [8] ABU-GHANNAM B J, SHAW R. Natural transition of boundary layers-The effects of turbulence, pressure gradient, and flow history[J]. Journal of Mechanical Engineering Science, 1980, 22(5):213-228. [9] WILCOX D C. Simulation of transition with a two-equation turbulence model[J]. AIAA Journal, 1994, 32(2):247-255. [10] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part Ⅰ:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422. [11] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables-Part Ⅱ:Test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3):423-434. [12] 史亚云, 白俊强, 华俊, 等. 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报, 2016, 37(3):780-789. SHI Y Y, BAI J Q, HUA J, et al. Study and modification of cross-flow induced transition model based on local variables[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):780-789(in Chinese). [13] RIVERS M B, LYNDE M N, CAMPBELL R L, et al. Experimental investigation of the NASA common research model with a natural laminar flow wing in the NASA Langley National Transonic Facility[C]//AIAA Scitech 2019 Forum, 2019:2189. [14] LYNDE M N, CAMPBELL R L, RIVERS M B, et al. Preliminary results from an experimental assessment of a natural laminar flow design method[C]//AIAA Scitech 2019 Forum, 2019:2298. [15] 王妙香, 王元元. 民用飞机总体技术研究进展[M]//孙侠生. 绿色航空技术研究与进展. 北京:航空工业出版社, 2020:27-44. WANG M X, WANG Y Y. Research progress of civil aircraft general technology[M]//SUN X S. Research and Progress of Green Aviation Technology. Beijing:Aviation Industry Press, 2020:27-44(in Chinese). [16] MADDALON D V. Hybrid laminar-flow control flight research:NASA TM-4331:47[R]. Washington, D.C.:NASA, 1991. [17] BELISLE M J, ROBERTS M W, WILLIAMS T C, et al. A transonic laminar-flow wing glove flight experiment:Overview and design optimization[C]//30th AIAA Applied Aerodynamics Conference, 2012:2667. [18] ROBERTS M W, REED H L, SARIC W S. A transonic laminar-flow wing glove flight experiment:Computational evaluation and linear stability[C]//30th AIAA Applied Aerodynamics Conference, 2012:2668. [19] YOUNG T, MAHONY B, HUMPHREYS B, et al. Durability of hybrid laminar flow control (HLFC) surfaces[J]. Aerospace Science and Technology, 2003, 7(3):181-190. [20] FUJION M. Design and development of the HondaJet[J]. Journal of Aircraft, 2005, 42(3):755-764. [21] FUJION M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615. [22] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese). [23] 艾梦琪, 段卓毅, 张健, 等. 高亚声速层流翼型转捩数值模拟及试验研究[J]. 飞行力学, 2020, 38(6):77-81, 94. AI M Q, DUAN Z Y, ZHANG J, et al. Numerical simulation and test on transition of a high subsonic laminar airfoil[J]. Flight Dynamics, 2020, 38(6):77-81, 94(in Chinese). [24] 王猛, 钟海, 衷洪杰, 等. 红外热像边界层转捩探测的飞行试验应用研究[J]. 空气动力学学报, 2019, 37(1):160-167. WANG M, ZHONG H, ZHONG H J, et al. Flight test applications of boundary transition detection method using IR technique[J]. Acta Aerodynamica Sinica, 2019, 37(1):160-167(in Chinese). [25] 钟海, 王猛, 王启. 边界层转捩红外探测试飞技术研究[J]. 红外技术, 2019, 41(8):712-718. ZHONG H, WANG M, WANG Q. IR technique investigation of boundary layer transition measurement in flight tests[J]. Infrared Technology, 2019, 41(8):712-718(in Chinese). [26] 钟海. 层流飞行试验迎角精确控制技术研究[J]. 飞行力学, 2020, 38(3):82-86. ZHONG H. Investigation for precise angle-of-attack control technique of laminar flow flight test[J]. Flight Dynamics, 2020, 38(3):82-86(in Chinese). [27] SHI Y Y, MADER C A., HE S C, et al. Natural laminar-flow airfoil optimization design using a discrete adjoint approach[J]. AIAA Journal, 2020, 58(11):4702-4722. [28] 周伟, 张正科, 屈科, 等. 翼型阻力计算方法的数值模拟研究[J]. 科学技术与工程, 2011, 11(33):8229-8237. ZHOU W, ZHANG Z K, QU K, et al. Numerical simulation study of the airfoil drag prediction methods[J]. Science Technology and Engineering, 2011, 11(33):8229-8237(in Chinese). |